首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of HIV-1 Tat protein with its recognition sequence, the trans-activation responsive region TAR is a potential target for drug discovery against HIV infection. We show by use of an in vitro competition filter binding interference assay that synthetic oligodeoxyribonucleotides complementary to the HIV-1 TAR RNA apical stem-loop and bulge region inhibit the binding of Tat protein or a Tat peptide (residues 37-72) better than two small molecules that have been shown to bind TAR RNA, Hoechst 33258 and neomycin B. The inhibition is not sensitive to length between 13 and 16 residues or precise positioning but shorter oligonucleotides are less effective. Enhanced inhibition was obtained for a 16-mer 2'-O-methyl oligoribonucleotide but not for C5-propyne pyrimidine-substituted oligonucleotides. Control non-antisense oligonucleotides were occasionally also effective in filter binding interference but only the complementary antisense 2'-O-methyl oligoribonucleotide was effective in gel mobility shift assays in direct TAR binding or in interference with Tat peptide binding to the TAR stem-loop. This is the first demonstration of effective inhibition of the Tat-TAR interaction by nuclease-stabilized oligonucleotide analogues.  相似文献   

2.
3.
Double-stranded RNA-binding proteins constitute a large family with conserved domains called dsRBDs. One of these, TRBP, a protein that binds HIV-1 TAR RNA, has two dsRBDs (dsRBD1 and dsRBD2), as indicated by computer sequence homology. However, a 24-amino-acid deletion in dsRBD2 completely abolishes RNA binding, suggesting that only one domain is functional. To analyse further the similarities and differences between these domains, we expressed them independently and measured their RNA-binding affinities. We found that dsRBD2 has a dissociation constant of 5.9 x 10-8 M, whereas dsRBD1 binds RNA minimally. Binding analysis of 25-amino-acid peptides in TRBP and other related proteins showed that only one peptide in TRBP and one in Drosophila Staufen bind TAR and a GC-rich TAR-mimic RNA. Whereas a 25-mer peptide derived from dsRBD2 (TR5) bound TAR RNA, the equivalent peptide in dsRBD1 (TR6) did not. Molecular modelling indicates that this difference can mainly be ascribed to the replacement of Arg by His residues. Mutational analyses in homologous peptides also show the importance of residues K2 and L3. Analysis of 15-amino-acid peptides revealed that, in addition to TR13 (from TRBP dsRBD2), one peptide in S6 kinase has RNA-binding properties. On the basis of previous and the present results, we can define, in a broader context than that of TRBP, the main outlines of a modular KR-helix motif required for binding TAR. This structural motif exists independently from the dsRBD context and therefore has a modular function.  相似文献   

4.
5.
Oligo-2'-O-methylribonucleotides conjugated with 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) were prepared by reaction of the AOQ or EOQ phosphoramidite with the protected oligonucleotide on a controlled pore glass support. Deprotection with ethylenediamine enabled successful isolation and purification of the highly reactive AOQ-conjugated oligomer. Polyacrylamide gel electrophoresis mobility shift experiments showed that the dissociation constants of complexes formed between an AOQ- or EOQ-conjugated 8-mer and complementary RNA or 2'-O-methyl-RNA targets (9- and 10-mers) were in the low nM concentration range at 37 degrees C, whereas no binding was observed for the corresponding nonconjugated oligomer, even at a concentration of 500 nM. Fluorescence studies suggested that this enhanced affinity is most likely due to the ability of the quinoline ring of the AOQ or EOQ group to stack on the last base pair formed between the oligomer and target, thus stabilizing the duplex. The binding affinity of a 2'-O-methyl RNA 15-mer, which contained an alternating methylphosphonate/phosphodiester backbone, for a 59-nucleotide stem-loop HIV TAR RNA target, increased 2.3 times as a consequence of conjugation with EOQ. The aminooxy group of AOQ-conjugated oligomers is a highly reactive nucleophile, which reacts readily with aldehydes and ketones to form stable oxime derivatives. This feature was used to couple an AOQ-oligomer with leupeptin, a tripeptide that contains a C-terminus aldehyde group. A simple method was developed to introduce a ketone functionality into peptides that contain a cysteine residue by reacting the peptide with bromoacetone. The resulting keto-peptide was then coupled to the AOQ-oligomer. This procedure was used to prepare oligonucleotide conjugates of a tetrapeptide, RGDC, and a derivative of HIV tat peptide having a C-terminus cysteine. The combination of the unique reactivity of the aminooxy group and enhanced binding affinity conferred by its quinoline ring suggests that AOQ may serve as a useful platform for the preparation of novel oligonucleotide conjugates.  相似文献   

6.
7.
8.
RNA binding by the tat and rev proteins of HIV-1   总被引:3,自引:0,他引:3  
  相似文献   

9.
RNA represents a potential target for new antiviral therapies, which are urgently needed to address public health threats such as the human immunodeficiency virus (HIV). We showed previously that the interaction between the viral Tat protein and the HIV-1 trans-activation response (TAR) RNA was blocked by TB-CP-6.9a. This cyclic peptide was derived from a TAR-binding loop that emerged during lab evolution of a TAR-binding protein (TBP) family. Here we synthesized and characterized a next-generation, cyclic-peptide library based on the TBP scaffold. We sought to identify conserved RNA-binding interactions and the influence of cyclization linkers on RNA binding and antiviral activity. A diverse group of cyclization linkers, encompassing disulfide bonds to bicyclic aromatic staples, was used to restrain the cyclic peptide geometry. Thermodynamic profiling revealed specific arginine-rich sequences with low to submicromolar affinity driven by enthalpic and entropic contributions. The best compounds exhibited no appreciable off-target binding to related molecules, such as BIV TAR and human 7SK RNAs. A specific arginine-to-lysine change in the highest affinity cyclic peptide reduced TAR binding by tenfold, suggesting that TBP-derived cyclic peptides use an arginine-fork motif to recognize the TAR major groove while differentiating the mode of binding from other TAR-targeting molecules. Finally, we showed that HIV infectivity in cell culture was reduced in the presence of cyclic peptides constrained by methylene or naphthalene-based linkers. Our findings provide insight into the molecular determinants required for HIV-1 TAR recognition and antiviral activity. These findings are broadly relevant to the development of antivirals that target RNA molecules.  相似文献   

10.
11.
5-Fluorouridine residues have been introduced into functionally important bulge and loop regions of 29-mer HIV-1 TAR RNA hairpins I and II to study Mg2+ and Ca2+ binding using 19F-NMR spectroscopy. There was no substantial binding detected up to 20-molar excess in case of both cations, whereas association of argininamide, used as a reference ligand, could be detected at less than 1-molar excess. The deltadelta 19F value of 1.93 ppm observed for (F)U23 upon argininamide binding is in agreement with former NMR studies of TAR RNA/argininamide complex. However, obtained results do not confirm U38 x A27 x U23 base-triple formation. The unmodified HIV-1 TAR RNA hairpin resulted from 600 ps in aqua molecular dynamics simulation was subjected to a molecular mechanics modelling of Mg+ binding.  相似文献   

12.
13.
In vitro selection was performed to identify DNA aptamers against the TAR RNA stem-loop structure of HIV-1. A counterselection step allowed the elimination of kissing complex-forming aptamers previously selected (Boiziau et al. J. Biol. Chem. 1999; 274:12730). This led to the emergence of oligonucleotides, most of which contained two consensus sequences, one targeted to the stem 3'-strand (5'-CCCTAGTTA) and the other complementary to the TAR apical loop (5'-CTCCC). The best aptamer could be shortened to a 19-mer oligonucleotide, characterized by a dissociation constant of 50 nM. A 16-mer oligonucleotide complementary to the TAR stem 3'-strand could also be derived from the identified aptamers, with an equal affinity (Kd = 50 nM). Experiments performed to elucidate the interaction between TAR and the aptamers (UV melting measures, enzymatic and chemical footprints) demonstrated that the TAR stem 5'-strand was not simply displaced as a result of the complex formation but unexpectedly remained associated on contact with the antisense oligonucleotide. We suggest that a multistranded structure could be formed.  相似文献   

14.
15.
16.
Neamine derivatives which have an arginine (RN), a pyrene (PCN) and both pyrene and arginine (PRN) have been prepared and their binding toward the RNA fragments derived from HIV-1 activator region, TAR and RRE RNA were examined. Among them, PRN bound either TAR RNA or RRE RNA with equivalent binding affinities as Tat and Rev peptide, respectively.  相似文献   

17.
Current approaches used to identify protein-binding small molecules are not suited for identifying small molecules that can bind emerging RNA drug targets. By docking small molecules onto an RNA dynamic ensemble constructed by combining NMR spectroscopy and computational molecular dynamics, we virtually screened small molecules that target the entire structure landscape of the transactivation response element (TAR) from HIV type 1 (HIV-1). We quantitatively predict binding energies for small molecules that bind different RNA conformations and report the de novo discovery of six compounds that bind TAR with high affinity and inhibit its interaction with a Tat peptide in vitro (K(i) values of 710 nM-169 μM). One compound binds HIV-1 TAR with marked selectivity and inhibits Tat-mediated activation of the HIV-1 long terminal repeat by 81% in T-cell lines and HIV replication in an HIV-1 indicator cell line (IC(50) ~23.1 μM).  相似文献   

18.
Trans-activation by HIV-1 Tat via a heterologous RNA binding protein   总被引:57,自引:0,他引:57  
M J Selby  B M Peterlin 《Cell》1990,62(4):769-776
  相似文献   

19.
Zhao H  Li J  Xi F  Jiang L 《FEBS letters》2004,563(1-3):241-245
The binding of polyamidoamine (PAMAM) dendrimer or Tat peptide to trans-acting responsive element (TAR) RNA has been studied using microgravimetric quartz crystal microbalance (QCM). Experimental results showed that PAMAM dendrimer could form complexes with TAR RNA. Especially, PAMAM dendrimer could disrupt the interaction of Tat peptide with TAR RNA, which is essential for HIV-1 virus replication, suggesting that QCM is a powerful tool for studying the binding processes of Tat peptide-TAR RNA and drug-TAR RNA and has great significance for the design of new drugs. An equation to measure the binding ability between TAR RNA and other species has been proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号