首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Changes in neuromuscular strategies employed with fatigue during multi-joint movements are still poorly understood. Studies have shown that motor variability of individual joints increases when performing upper limb tasks to fatigue, while movement parameters related to the task goal remain constant. However, how the inter-limb coordination and its variability change during specific movement phases with fatigue is still unclear. The aim of this study was to assess the effects of neck-shoulder fatigue on shoulder and elbow kinematic variabilities, shoulder-elbow coordination and its variability, and endpoint characteristics during different phases of a forward pointing movement. Nineteen healthy young adults continuously performed a repetitive pointing task until fatigue (Borg rating of 8/10). Changes in elbow-shoulder coordination through the movement were assessed using the continuous relative phase and statistical nonparametric mapping methods. At the end of the task, muscle fatigue was evidenced by significant increases in anterior deltoid (+13%) and biceps brachii (+30%) activity. Shoulder horizontal abduction, elbow flexion variability and shoulder-elbow coordination variability were increased with fatigue at different moments of the movement cycle (shoulder: during the first 17% and most of the second half movement, elbow: from 73% to 91%, coordination: almost the whole movement). However, movement timing errors and endpoint spatial variability were mostly preserved, even with fatigue. We showed that increased variability with fatigue is not only observed in the fatigued joint (shoulder), but also in the elbow and shoulder-elbow coordination, and may have a goal of preserving global task performance.  相似文献   

3.
Feedback from muscles stimulates ventilation at the onset of passive movement. We hypothesized that central neural activity via a cognitive task source would interact with afferent feedback, and we tested this hypothesis by examining the fast changes in ventilation at the transition from rest to passive leg movement, under two conditions: 1) no task and 2) solving a computer-based puzzle. Resting breathing was greater in condition 2 than in condition 1, evidenced by an increase in mean +/- SE breathing frequency (18.2 +/- 1.1 vs. 15.0 +/- 1.2 breaths/min, P = 0.004) and ventilation (10.93 +/- 1.16 vs. 9.11 +/- 1.17 l/min, P < 0.001). In condition 1, the onset of passive movement produced a fast increase in mean +/- SE breathing frequency (change of 2.9 +/- 0.4 breaths/min, P < 0.001), tidal volume (change of 233 +/- 95 ml, P < 0.001), and ventilation (change of 6.00 +/- 1.76 l/min, P < 0.001). However, in condition 2, the onset of passive movement only produced a fast increase in mean +/- SE breathing frequency (change of 1.3 +/- 0.4 breaths/min, P = 0.045), significantly smaller than in condition 1 (P = 0.007). These findings provide evidence for an interaction between central neural cognitive activity and the afferent feedback mechanism, and we conclude that the performance of a cognitive task suppresses the respiratory response to passive movement.  相似文献   

4.
《Journal of Proteomics》2010,73(2):252-266
In recent years, affinity-based technologies have become important tools for serum profiling to uncover protein expression patterns linked to disease state or therapeutic effects. In this study, we describe a path towards the production of an antibody microarray to allow protein profiling of biotinylated human serum samples with reproducible sensitivity in the picomolar range. With the availability of growing numbers of affinity reagents, protein profiles are to be validated in efficient manners and we describe a cross-platform strategy based on data concordance with a suspension bead array to interrogate the identical set of antibodies with the same cohort of serum samples. Comparative analysis enabled to screen for high-performing antibodies, which were displaying consistent results across the two platforms and targeting known serum components. Moreover, data processing methods such as sample referencing and normalization were evaluated for their effects on inter-platform agreement. Our work suggests that mutual validation of protein expression profiles using alternative microarray platforms holds great potential in becoming an important and valuable component in affinity-based high-throughput proteomic screenings as it allows to narrow down the number of discovered targets prior to orthogonal, uniplexed validation approaches.  相似文献   

5.
Several studies have examined postural control in dyslexic children; however, their results were inconclusive. This study investigated the effect of a dual task on postural stability in dyslexic children. Eighteen dyslexic children (mean age 10.3±1.2 years) were compared with eighteen non-dyslexic children of similar age. Postural stability was recorded with a platform (TechnoConcept®) while the child, in separate sessions, made reflex horizontal and vertical saccades of 10° of amplitude, and read a text silently. We measured the surface and the mean speed of the center of pressure (CoP). Reading performance was assessed by counting the number of words read during postural measures. Both groups of children were more stable while performing saccades than while reading a text. Furthermore, dyslexic children were significantly more unstable than non-dyslexic children, especially during the reading task. Finally, the number of words read by dyslexic children was significantly lower than that of non-dyslexic children and, in contrast to the non-dyslexic children. In line with the U-shaped non-linear interaction model, we suggest that the attention consumed by the reading task could be responsible for the loss of postural control in both groups of children. The postural instability observed in dyslexic children supports the hypothesis that such children have a lack of integration of multiple sensorimotor inputs.  相似文献   

6.
This article gives insights into the possible neuronal processes involved in visual discrimination. We study the performance of a spiking network of Integrate-and-Fire (IF) neurons when performing a benchmark discrimination task. The task we adopted consists of determining the direction of moving dots in a noisy context using similar stimuli to those in the experiments of Newsome and colleagues. We present a neural model that performs the discrimination involved in this task. By varying the synaptic parameters of the IF neurons, we illustrate the counter-intuitive importance of the second-order statistics (input noise) in improving the discrimination accuracy of the model. We show that measuring the Firing Rate (FR) over a population enables the model to discriminate in realistic times, and even surprisingly significantly increases its discrimination accuracy over the single neuron case, despite the faster processing. We also show that increasing the input noise increases the discrimination accuracy but only at the expense of the speed at which we can read out the FR.  相似文献   

7.
In the present experiment the instruction to relax was given to awake highly (Highs) and non hypnotizable subjects (Lows), while their heart rate, respirogram and skin resistance were recorded together with electroencephalogram, electroculogram and corrugator electromiogram. At the beginning of the experiment, Highs exhibited no significant difference in heart rate (HR), respiratory frequency (RF) and heart rate variability (HRV) with respect to Lows, but showed a higher EEG alpha and theta1 power. During the session, both groups decreased their heart rate, but changes were significant only in Lows, which increased significantly also the parasympathetic component of their HRV (high frequency, HF). In both groups, EEG showed alpha, beta2 and theta2 power decrements; theta1 activity decreased only in Lows, while gamma power increased in Highs and decreased in Lows. Results suggest that Highs and Lows used different cognitive strategies in the elaboration of the relaxation request and that Highs performed the task through a higher integrative activity.  相似文献   

8.
Myosin V is an unconventional myosin thought to move processively along actin filaments. To have hard evidence for the high processivity, we sought to observe directly the movement by individual native chick brain myosin V (BMV) molecules with fluorescent calmodulin. Single BMV molecules did exhibit highly processive movement along actin filaments fixed to a coverslip. BMV continued to move up to the barbed end of its actin track, and did not readily detach from action. The barbed end, therefore, got brighter with time, because of a constant stream of BMV traffic. The maximum speed of the processive movement was 1 microm/s, and the maximum actin-activated ATPase rate was 2.4 s(-1). These values apparently imply that BMV travels a great distance, 400 nm, per an ATPase cycle.  相似文献   

9.

Background  

Decoding neural activities associated with limb movements is the key of motor prosthesis control. So far, most of these studies have been based on invasive approaches. Nevertheless, a few researchers have decoded kinematic parameters of single hand in non-invasive ways such as magnetoencephalogram (MEG) and electroencephalogram (EEG). Regarding these EEG studies, center-out reaching tasks have been employed. Yet whether hand velocity can be decoded using EEG recorded during a self-routed drawing task is unclear.  相似文献   

10.
Effects of speed and precision on electromyography (EMG) in human shoulder muscles were studied during a hand movement task where five points were marked repeatedly with a pencil. Six female subjects performed with three precision demands and at four speeds. Three of the speeds were predefined, while the last speed was performed as fast as possible. The EMG were recorded from 13 shoulder muscles or parts of muscles. Elbow velocity, acceleration and rectified EMG were calculated for each task. The mean elbow velocity and acceleration increased with speed and precision demands. There was an increase in EMG as the speed demand increased for all three precision demands (P < 0.001), and as the precision demand increased for the two highest predefined speed demands (P < 0.05). The combination of a high speed and a high precision demand resulted in the highest EMG. Different EMG levels were attained for the 13 muscles and the supraspinatus muscle always showed the highest normalized EMG. However, analysis of variance showed the same relative increase for all muscles with speed and precision demands. The EMG changes in response to precision demand can only be explained in part by the differences in movement velocity and acceleration, and other factors such as increased co-contraction must also be taken into account. Accepted: 25 May 1998  相似文献   

11.
Brain mechanisms of motor programming were studied with the use of the model of learning precise horizontal elbow flexion. To exclude visual control and make learning to be based, predominantly, on proprioception, experiments were carried out in darkness. The target position was not demonstrated beforehand. Subject (S) had to find an adequate angle of flexion during training with a short light-diode flash which marked the moment of target reaching. Ss were asked to perform a precise horizontal elbow flexion as fast as possible. Movement amplitude, velocity and acceleration were on-line recorded. Ten Ss were divided in two groups. The first group was initially trained to make the precise movement with the preset amplitude of 70 degrees and the second group had to perform similar movement with the amplitude of 55 degrees. Each S was trained to the moment of acquisition of a stable skill (within the 5% error of preset flexion amplitude). After that the target position was unex pectedly changed (from 70 for 55 degree or visa verse). This work was a continuation of our earlier search for a mathematical hypothesis most correctly explaining the central mechanism of motor learning. The dynamics of kinematic characteristics of learning in our experiments fitted well to A. Barto and J. Houk's "Cerebellar Model of Timing and Prediction". A comparison of a computer simulation of this model to the learning characteristics allowed us to make some refinements of the model very important for data analysis possible under conditions of noninvasive investigations. The analysis of acceleration dynamics not considered by the authors of the model made it possible to identify this index with the "pulse phase" similar to the period of LTD of Purkinje cells (the key mechanism of the model). We took such an interpretation as principal in our analysis of experimental data. We analyzed integrals of positive and negative acceleration which made it possible to gain a deeper insight into the physiological mechanism of a replacement of one central command by the other as a consequence of change in spatial task conditions.  相似文献   

12.
Changes in posture alter the attentional demands of voluntary movement.   总被引:2,自引:0,他引:2  
Two simple experiments reveal that the ease with which an action is performed by the neuromuscular-skeletal system determines the attentional resources devoted to the movement. Participants were required to perform a primary task, consisting of rhythmic flexion and extension movements of the index finger, while being paced by an auditory metronome, in one of two modes of coordination: flex on the beat or extend on the beat. Using a classical dual-task methodology, we demonstrated that the time taken to react to an unpredictable visual probe stimulus (the secondary task) by means of a pedal response was greater when the extension phase of the finger movement sequence was made on the beat of the metronome than when the flexion phase was coordinated with the beat. In a second experiment, the posture of the wrist was manipulated in order to alter the operating lengths of muscles that flex and extend the index finger. The attentional demands of maintaining the extend-on-the-beat pattern of coordination were altered in a systematic fashion by changes in wrist posture, even though the effector used to respond to the visual probe stimulus was unaffected.  相似文献   

13.
14.
Summary The movement of slime-mold amoebae under isotropic conditions in two dimensions is represented as a Correlated Walk with straight steps of variable length. The steps are correlated via the angle turned through from step to step. The hypotheses and predictions of the model compare favourably with experimental data for Dictyostelium discoideum amoebae.This work was supported in part by an M. R. C. Grant # MA 5340.  相似文献   

15.
Flavone, dextrose and long swim stress exhibited antinociception. Degree of antinociception was greater with long swim stress as compared to flavone or dextrose. Combination of these treatments resulted in potentiation of antinociception. Naloxone (opioid antagonist; 5 mg/kg i.p.) antagonised flavone or long stress induced antinociception showing opioid medicated mechanism, however, failed to reverse the potentiated antinociceptive component recorded in long stressed animals which received flavone and dextrose. Antinociceptive activity of flavone, dextrose and long swim stress which was documented by acetic acid assay has been confirmed in the present study. Role for opioid system in this action has been demonstrated. Therefore, formalin test can also be considered as an useful assay procedure for testing flavonoids. However, like acetic acid assay this assay procedure also has the limitation that it is unable to detect minor changes in the degree of antinociception produced by physiological interventions such as long swim and dextrose.  相似文献   

16.
The contribution of the trunk neuromuscular system (TNS) to spine stability has been shown in earlier studies by characterizing changes in antagonistic activity of trunk muscles following alterations in stability demands of a task. Whether and/or how much such changes in the response of TNS to alteration in stability demand of the task alter spinal stiffness remains unclear. To address this research gap, a repeated measure study was conducted on twenty gender-balanced asymptomatic individuals to evaluate changes in trunk bending stiffness throughout the lumbar spine’s range of flexion following alterations in both stability and equilibrium demands of a load holding task. Trunk bending stiffness was determined using trunk stiffness tests in upright posture on a rigid metal frame under different equilibrium and stability demands on the lower back. Increasing the stability demand by increasing the height of lifted load ∼30 cm only increased trunk bending stiffness (∼39%) over the lower range of lumbar flexion and under the low equilibrium demand condition. Similarly, increasing the equilibrium demand of the task by increasing the weight of lifted load by 3.5 kg only increased trunk bending stiffness (55%) over the low range of lumbar flexion and under the low stability demand condition. Our results suggest a non-linear relationship between changes in stability and equilibrium demands of a task and the contribution of TNS to trunk bending stiffness. Specifically, alterations in TNS response to changes in stability and equilibrium demand of a given task will increase stiffness of the trunk only if the background stiffness is low.  相似文献   

17.
The effects of the pre-exposure schedule (concurrent, intermixed, and blocked) to two similar visual stimuli were assessed in three different tasks. Participants were more accurate identifying one of two pre-exposed stimuli as the target by means of same/different judgments after concurrent than intermixed or blocked pre-exposures. Regardless of pre-exposure schedule, participants were accurate in identifying the same target stimulus in a subsequent multiple choice task. However, the other pre-exposed stimulus was incorrectly chosen as the target in a greater proportion after blocked than intermixed or concurrent pre-exposure. Finally, participants who received the blocked schedule showed a greater ability to construct the target in a puzzle test than those who received a concurrent or intermixed schedule. These results suggest that the effect of pre-exposure schedule may depend on task-specific demands. But all these results might be explained by a selective attention mechanism like that proposed by Gibson (1969) to account for perceptual learning.  相似文献   

18.
19.
20.
Caribou movement as a correlated random walk   总被引:2,自引:0,他引:2  
Movement is a primary mechanism coupling animals to their environment, yet there exists little empirical analysis to test our theoretical knowledge of this basic process. We used correlated random walk (CRW) models and satellite telemetry to investigate long-distance movements of caribou, the most vagile, non-volant terrestrial vertebrate in the world. Individual paths of migratory and sedentary female caribou were quantified using measures of mean move length and angle, and net squared displacements at each successive move were compared to predictions from the models. Movements were modelled at two temporal scales. For paths recorded through one annual cycle, the CRW model overpredicted net displacement of caribou through time. For paths recorded over shorter intervals delineated by seasonal behavioural changes of caribou, there was excellent correspondence between model predictions and observations for most periods for both migratory and sedentary caribou. On the smallest temporal scale, a CRW model significantly overpredicted displacements of migratory caribou during 3 months following calving; this was also the case for sedentary caribou in late summer, and in late winter. In all cases of overprediction there was significant positive autocorrelation in turn direction, indicating that movements were more tortuous than expected. In one case of underprediction, significant negative autocorrelation of sequential turn direction was evident, indicating that migratory caribou moved in straightened paths during spring migration to calving grounds. Results are discussed in light of known migration patterns and possible limiting factors for caribou, and indicate the applicability of CRW models to animal movement at vast spatial and temporal scales, thus assisting in future development of more sophisticated models of population spread and redistribution for vertebrates. Received: 14 July 1999 / Accepted: 15 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号