首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hidden cost of information in collective foraging   总被引:7,自引:0,他引:7  
Many animals nest or roost colonially. At the start of a potential foraging period, they may set out independently or await information from returning foragers. When should such individuals act independently and when should they wait for information? In a social insect colony, for example, information transfer may greatly increase a recruit's probability of finding food, and it is commonly assumed that this will always increase the colony's net energy gain. We test this assumption with a mathematical model. Energy gain by a colony is a function both of the probability of finding food sources and of the duration of their availability. A key factor is the ratio of pro-active foragers to re-active foragers. When leaving the nest, pro-active foragers search for food independently, whereas re-active foragers rely on information from successful foragers to find food. Under certain conditions, the optimum strategy is totally independent (pro-active) foraging because potentially valuable information that re-active foragers may gain from successful foragers is not worth waiting for. This counter-intuitive outcome is remarkably robust over a wide range of parameters. It occurs because food sources are only available for a limited period. Our study emphasizes the importance of time constraints and the analysis of dynamics, not just steady states, to understand social insect foraging.  相似文献   

2.

Background

The regulation of energy intake is a complex process involving the integration of homeostatic signals and both internal and external sensory inputs. The objective of this study was to examine the effects of short-term overfeeding on the neuronal response to food-related visual stimuli in individuals prone and resistant to weight gain.

Methodology/Principal Findings

22 thin and 19 reduced-obese (RO) individuals were studied. Functional magnetic resonance imaging (fMRI) was performed in the fasted state after two days of eucaloric energy intake and after two days of 30% overfeeding in a counterbalanced design. fMRI was performed while subjects viewed images of foods of high hedonic value and neutral non-food objects. In the eucaloric state, food as compared to non-food images elicited significantly greater activation of insula and inferior visual cortex in thin as compared to RO individuals. Two days of overfeeding led to significant attenuation of not only insula and visual cortex responses but also of hypothalamus response in thin as compared to RO individuals.

Conclusions/Significance

These findings emphasize the important role of food-related visual cues in ingestive behavior and suggest that there are important phenotypic differences in the interactions between external visual sensory inputs, energy balance status, and brain regions involved in the regulation of energy intake. Furthermore, alterations in the neuronal response to food cues may relate to the propensity to gain weight.  相似文献   

3.
PYY (3-36) is postulated to act as a satiety factor in the gut-hypothalamic pathway to inhibit food intake and body weight gain in humans and rodent models. We determined the effect of 14-day continuous intravenous infusion of PYY (3-36) (175 microg/kg/day) on food intake and body weight gain in colectomized male Wistar rats. Colectomy caused an increase in plasma PYY levels at 7 days which was reduced at 14 days but still significantly elevated compared to basal preoperative values. Animals treated with continuous PYY (3-36) infusion had significantly elevated PYY levels compared to the control group throughout the whole experiment, but showed a similar pattern of food intake and body weight gain. In conclusion, although continuous intravenous infusion is the most physiologically relevant method to mimic high postprandial PYY levels, we did not observe any significant effect on food intake and body weight gain in non-food deprived colectomized animals. This suggests that PYY has, if at all, only a minor role in food intake in rats.  相似文献   

4.
If the food distribution contains spatial pattern, the food density in a particular patch provides a forager with information about nearby patches. Foragers might use this information to exploit patchily distributed resources profitably. We model the decision on how far to move to the next patch in linear environments with different spatial patterns in the food distribution (clumped, random, and regular) for foragers that differ in their degree of information. An ignorant forager is uninformed and therefore always moves to the nearest patch (be it empty or filled). In contrast, a prescient forager is fully informed and only exploits filled patches, skipping all empty patches. A Bayesian assessor has prior knowledge about the content of patches (i.e. it knows the characteristics of the spatial pattern) and may skip neighbouring patches accordingly by moving to the patch where the highest gain rate is expected. In most clumped and regular distributions there is a benefit of assessment, i.e. Bayesian assessors achieve substantially higher long-term gain rates than ignorant foragers. However, this is not the case in distributions with less strong spatial pattern, despite the fact that there is a large potential benefit from a sophisticated movement rule (i.e. a large penalty of ignorance). Bayesian assessors do also not achieve substantially higher gain rates in environments that are relatively rich or poor in food. These results underline that an incompletely informed forager that is sensitive to spatial pattern should not always respond to existing pattern. Furthermore, we show that an assessing forager can enhance its long-term gain rate in highly clumped and some specific near-regular food distributions, by sampling the environment in slightly larger spatial units.  相似文献   

5.
If the food distribution contains spatial pattern, the food density in a particular patch provides a forager with information about nearby patches. Foragers might use this information to exploit patchily distributed resources profitably. We model the decision on how far to move to the next patch in linear environments with different spatial patterns in the food distribution (clumped, random, and regular) for foragers that differ in their degree of information. An ignorant forager is uninformed and therefore always moves to the nearest patch (be it empty or filled). In contrast, a prescient forager is fully informed and only exploits filled patches, skipping all empty patches. A Bayesian assessor has prior knowledge about the content of patches (i.e. it knows the characteristics of the spatial pattern) and may skip neighbouring patches accordingly by moving to the patch where the highest gain rate is expected. In most clumped and regular distributions there is a benefit of assessment, i.e. Bayesian assessors achieve substantially higher long-term gain rates than ignorant foragers. However, this is not the case in distributions with less strong spatial pattern, despite the fact that there is a large potential benefit from a sophisticated movement rule (i.e. a large penalty of ignorance). Bayesian assessors do also not achieve substantially higher gain rates in environments that are relatively rich or poor in food. These results underline that an incompletely informed forager that is sensitive to spatial pattern should not always respond to existing pattern. Furthermore, we show that an assessing forager can enhance its long-term gain rate in highly clumped and some specific near-regular food distributions, by sampling the environment in slightly larger spatial units.  相似文献   

6.
Hemodynamic imaging results have associated both gender and body weight to variation in brain responses to food-related information. However, the spatio-temporal brain dynamics of gender-related and weight-wise modulations in food discrimination still remain to be elucidated. We analyzed visual evoked potentials (VEPs) while normal-weighted men (n = 12) and women (n = 12) categorized photographs of energy-dense foods and non-food kitchen utensils. VEP analyses showed that food categorization is influenced by gender as early as 170 ms after image onset. Moreover, the female VEP pattern to food categorization co-varied with participants' body weight. Estimations of the neural generator activity over the time interval of VEP modulations (i.e. by means of a distributed linear inverse solution [LAURA]) revealed alterations in prefrontal and temporo-parietal source activity as a function of image category and participants' gender. However, only neural source activity for female responses during food viewing was negatively correlated with body-mass index (BMI) over the respective time interval. Women showed decreased neural source activity particularly in ventral prefrontal brain regions when viewing food, but not non-food objects, while no such associations were apparent in male responses to food and non-food viewing. Our study thus indicates that gender influences are already apparent during initial stages of food-related object categorization, with small variations in body weight modulating electrophysiological responses especially in women and in brain areas implicated in food reward valuation and intake control. These findings extend recent reports on prefrontal reward and control circuit responsiveness to food cues and the potential role of this reactivity pattern in the susceptibility to weight gain.  相似文献   

7.
Ola Olsson 《Oikos》2006,112(2):285-297
I model the optimal Bayesian foraging strategy in environments with only two patch qualities. That is, all patches either belong to one rich type, or to one poor type. This has been a situation created in several foraging experiments. In contrast, previous theories of Bayesian foraging have dealt with prey distributions where patches may belong to one out of a large range of qualities (binomial, Poisson and negative binomial distributions). This study shows that two‐patch systems have some unique properties. One qualitative difference is that in many cases it will be possible for a Bayesian forager to gain perfect information about patch quality. As soon as it has found more than the number of prey items that should be available in a poor patch, it “knows” that it is in a rich patch. The model generates at least three testable predictions. 1) The distribution of giving‐up densities, GUDs, should be bimodal in rich patches, when rich patches are rare in the environment. This is because the optimal strategy is then devoted to using the poor patches correctly, at the expense of missing a large fraction of the few rich patches available. 2) There should be a negative relation between GUD and search time in poor patches, when rich patches are much more valuable than poor. This is because the forager gets good news about potential patch quality from finding some food. It therefore accepts a lower instantaneous intake rate, making it more resistant against runs of bad luck, decreasing the risk of discarding rich patches. 3) When the energy gains required to remain in the patch are high (such as under high predation risk), the overuse of poor patches and the underuse of rich increases. This is because less information about patch quality is gained if leaving at high intake rates (after short times). The predictions given by this model may provide a much needed and effective conceptual framework for testing (both in the lab and the field) whether animals are using Bayesian assessment.  相似文献   

8.
Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of “precipitation of the warmest quarter” and “annual mean temperature” were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China.  相似文献   

9.
Previous research has shown that obese individuals may be biased towards attending to food over non-food information, and this bias may contribute to the development and/or maintenance of obesity. The present study sought to extend our understanding of maladaptive attentional processing in this population by investigating whether obese individuals have difficulty in disengaging attention from food compared with non-food images, relative to normal-weight controls. To address this question, we measured inhibition of return (IOR) in an attentional cueing task. The participants were 29 obese and 35 normal-weight satiated females without eating disorders. The obese group displayed less IOR to food images than the normal-weight group, while there was no difference in IOR between the groups for non-food images. This suggests that obese females have greater difficulty disengaging attention from food than normal-weight females. Our findings provide a new focus for studies investigating maintenance factors in obesity and are discussed in relation to a theory of incentive-sensitisation.  相似文献   

10.
For animals that cannot be housed socially for scientific reasons, such as rodents on food intake-energy expenditure studies, the provision of environmental enrichment may alleviate stress. However, the influence of environmental enrichment on food intake and energy expenditure is unresolved. The authors tested the effects of two environmental enrichment options on food intake and weight gain in singly housed mice. Their results may be helpful in developing rodent enrichment programs.  相似文献   

11.
Human infrastructure and disturbance play an important role when animals select resources in human-modified landscapes. Theory predicts that animals trade food intake against costs of movement or disturbance to optimize net energy gain and fitness, but other necessary resources may also constrain the decisions, e.g. when animals repeatedly need to return to a central location, such as a nest, waterhole or night roost. Central place foraging theory states that the probability of occurrence of an animal decreases with the distance to the central location while selectivity for food items or foraging sites providing high net energy gain should increase with distance. We studied foraging patterns of common cranes Grus grus feeding in an agricultural landscape adjacent to a wetland to which they return for night roost. We used availability of spilled grains on harvested fields and distance to human settlement as proxy for site quality (i.e. increased likelihood of increased net energy gain with increased food availability and less disturbance). As predicted by theory, our results clearly show that cranes were more likely (more than twice as high resource selection function scores) to select foraging sites close to roosts. However, contrary to predictions, the selection of high quality sites in terms of high food availability decreased with distance to roost sites. Nevertheless, our results indicate that cranes were more likely to select sites with low risk of human disturbance far from roost sites, and were more tolerant to disturbance close to roost sites. How different species respond to the local and environmental conditions will increase the understanding of the species’ resource requirement, and also where in the landscape to prioritize conservation or management actions (e.g. mitigation of human disturbance and crop damage prevention to sustain agricultural production).  相似文献   

12.
Desert endotherms such as Merriam's kangaroo rat (Dipodomys merriami) use both behavioral and physiological means to conserve energy and water. The energy and water needs of kangaroo rats are affected by their thermal environment. Animals that choose temperatures within their thermoneutral zone (TNZ) minimize energy expenditure but may impair water balance because the ratio of water loss to water gain is high. At temperatures below the TNZ, water balance may be improved because animals generate more oxidative water and reduce evaporative water loss; however, they must also increase energy expenditure to maintain a normal body temperature. Hence, it is not possible for kangaroo rats to choose thermal environments that simultaneously minimize energy expenditure and increase water conservation. I used a thermal gradient to test whether water stress, energy stress, simultaneous water and energy stress, or no water/energy stress affected the thermal environment selected by D. merriami. During the night (i.e., active phase), animals in all four treatments chose temperatures near the bottom of their TNZ. During the day (i.e., inactive phase), animals in all four treatments settled at temperatures near the top of their TNZ. Thus, kangaroo rats chose thermal environments that minimized energy requirements, not water requirements. Because kangaroo rats have evolved high water use efficiency, energy conservation may be more important than water conservation to the fitness of extant kangaroo rats.  相似文献   

13.
At high altitude, the reduced availability of thermal energy and oxygen poses major challenges to organisms. Different species or populations have evolved similar solutions to these challenges, such as blood flow regulation in animals (Bouverot, 1985). Previous studies investigating such convergent adaptations have primarily looked at changes in host genomes (e.g., see Scheinfeldt & Tishkoff, 2010), but have rarely considered the potential role of the gut microbiome in mediating host adaptation. As gut microbes can indirectly regulate host blood pressure (Pluznick, 2014) and energy intake efficiency, it has been hypothesized that they could help maintain normal energy production and/or optimize nutritional assimilation in high‐altitude hypoxic environments (e.g., Li & Zhao, 2015). However, it has been hard to (a) show that there is a direct effect of altitude on the gut microbiota, because of the many potential confounding effects of altitude (e.g., diet is correlated to altitude, as well as to the microbiome) and to (b) understand the mechanisms by which the microbiota could mediate host hypoxic and thermoregulatory stresses. In this issue of Molecular Ecology, Suzuki, Martins, and Nachman (2018) show that, independently of diet, taxonomic composition and functions of mouse gut microbiota converge in independent high‐altitude environments and propose the intriguing hypothesis that some of these functional convergences might be beneficial to their host.  相似文献   

14.
In various aspects of linguistic analysis and human cognition, some forms of observed variation are ignored in the service of handling more abstract categories. In the absence of training, rhesus discriminate between different types of vocalizations based on the information conveyed as opposed to their acoustic morphologies. We hypothesized that neurons in the ventrolateral prefrontal cortex (vPFC), an area involved in auditory-object processing, might be involved in this spontaneous categorization. To test this hypothesis, we recorded vPFC activity while rhesus listened to vocalizations conveying information about food and non-food events. Results showed between, but not within category discrimination. That is, vPFC neurons discriminated between vocalizations associated with food versus non-food events but not within the class of food calls associated with differences in quality. These results indicate that the vPFC plays a significant role in spontaneously processing abstract categorical information.  相似文献   

15.
Predatory and scavenging birds may be exposed to high levels of lead when they ingest shot or bullet fragments embedded in the tissues of animals injured or killed with lead ammunition. Lead poisoning was a contributing factor in the decline of the endangered California condor population in the 1980s, and remains one of the primary factors threatening species recovery. In response to this threat, a ban on the use of lead ammunition for most hunting activities in the range of the condor in California was implemented in 2008. Monitoring of lead exposure in predatory and scavenging birds is essential for assessing the effectiveness of the lead ammunition ban in reducing lead exposure in these species. In this study, we assessed the effectiveness of the regulation in decreasing blood lead concentration in two avian sentinels, golden eagles and turkey vultures, within the condor range in California. We compared blood lead concentration in golden eagles and turkey vultures prior to the lead ammunition ban and one year following implementation of the ban. Lead exposure in both golden eagles and turkey vultures declined significantly post-ban. Our findings provide evidence that hunter compliance with lead ammunition regulations was sufficient to reduce lead exposure in predatory and scavenging birds at our study sites.  相似文献   

16.
Obligatory thermogenesis is a necessary accompaniment of all metabolic processes involved in maintenance of the body in the living state, and occurs in all organs. It includes energy expenditure involved in ingesting, digesting, and processing food (thermic effect of food (TEF]. At certain life stages extra energy expenditure for growth, pregnancy, or lactation would also be obligatory. Facultative thermogenesis is superimposed on obligatory thermogenesis and can be rapidly switched on and rapidly suppressed by the nervous system. Facultative thermogenesis is important in both thermal balance, in which control of thermoregulatory thermogenesis (shivering in muscle, nonshivering in brown adipose tissue (BAT] balances neural control of heat loss mechanisms, and in energy balance, in which control of facultative thermogenesis (exercise-induced in muscle, diet-induced thermogenesis (DIT) in BAT) balances control of energy intake. Thermal balance (i.e., body temperature) is much more stringently controlled than energy balance (i.e., body energy stores). Reduced energy expenditure for thermogenesis is important in two types of obesity in laboratory animals. In the first type, deficient DIT in BAT is a prominent feature of altered energy balance. It may or may not be associated with hyperphagia. In a second type, reduced cold-induced thermogenesis in BAT as well as in other organs is a prominent feature of altered thermal balance. This in turn results in altered energy balance and obesity, exacerbated in some examples by hyperphagia. In some of the hyperphagic obese animals it is likely that the exaggerated obligatory thermic effect of food so alters thermal balance that BAT thermogenesis is suppressed. In all obese animals, deficient hypothalamic control of facultative thermogenesis and (or) food intake is implicated.  相似文献   

17.
Models for clutch size in species where a female deposits eggs into a larval resource of limited carrying capacity are developed. Previous models of clutch size related mainly to vertebrates (notably birds) where parental care limits clutch size. Our models cover cases where a single female “saturates” a larval food patch with larvae. The main predictions are that (1) extra eggs should be laid to compensate for larval moratility; (2) clutches should generally be smaller than the size that yields the maximum number of surviving larvae/clutch; (3) in species that gain resources for eggs in the adult stage, clutch size will be unaffected by age-independent parental mortality between clutches; (4) clutch size should reduce throughout life in species that gain resources for eggs before the adult stage; (5) similar species, but which are constrained to produce constant-sized clutches, should lay smaller clutches if their total potential egg production is low; (6) clutch size should increase with increasing search costs for oviposition sites. An ESS model of double-oviposition (where two females sometimes lay in the same larval food patch) indicates that the first female should generally lay more eggs than the second female; the difference in clutch size should decrease as the probability of double-oviposition increases, and should decrease as the search costs for larval food plants decreases. Many of the predictions have some support from data on insect oviposition.  相似文献   

18.
Based on a mathematical model, I show that the amount of food in the habitat determines which among alternative methods for search of prey, respectively, for pursuit‐and‐capture give the shortest daily foraging time. The higher the locomotor activity, the higher the rate of energy expenditure and the larger the habitat space a predator can search for prey per time unit. Therefore, I assume that the more efficient a foraging method is, the higher its rate of energy expenditure. Survival selection favors individuals that use foraging methods that cover their energy needs in the shortest possible time. Therefore, I take the optimization criterion to be minimization of the daily foraging time or, equivalently, maximization of the rate of net energy gain. When time is limiting and food is in short supply, as during food bottleneck periods, low‐efficiency, low‐cost foraging methods give shorter daily foraging times than high‐efficiency, energy‐expensive foraging methods. When time is limiting, food is abundant and energy needs are large, as during reproduction, high‐efficiency high‐cost foraging methods give shorter daily foraging times than low‐efficiency low‐cost foraging methods. When time is not limiting, food is abundant, and energy needs are small, the choice of foraging method is not critical. Small animals have lower rates of energy expenditure for locomotion than large animals. At a given food density and with similar diet, small animals are therefore more likely than large ones to minimize foraging time by using high‐efficiency energy‐expansive foraging methods and to exploit patches and sites that require energy‐demanding locomotion modes. Survival selection takes place at food shortages, while low‐efficiency low‐cost foraging methods are used, whereas reproduction selection occurs when food is abundant and high‐efficiency energy‐expensive foraging methods do better. In seasonal environments, selection therefore acts on different foraging methods at different times. Morphological adaptation to one method may oppose adaptation to another. Such conflicts select against foraging and morphological specialization and tend to give species‐poor communities of year‐round resident generalists. But a stable year‐round food supply favors specialization, niche narrowing, and dense species packing.  相似文献   

19.
Melatonin, the chief hormone of the pineal gland, is produced and secreted into the blood in a circadian manner with maximal production always occurring during the dark phase of the light:dark cycle. Whereas the 24h rhythm of melatonin production is very robust in young animals including humans, the cycle deteriorates during ageing. The rhythm of melatonin can be substantially preserved during ageing by restricting the food intake of experimental animals; this same treatment increases the life span of the animals. The exogenous administration of melatonin to non-food restricted animals also reportedly increases their survival. Moreover, melatonin has been shown to have immunoenhancing effects and oncostatic properties. The implication of these studies is that melatonin may have both direct and indirect beneficial effects in delaying ageing processes or it may retard the development of processes (e.g., immunodeficiency and tumor growth) which contribute to a reduced life span.  相似文献   

20.
The experiments reported here attempted to examine in two groups of rats the effects on the taste preferences, food and fluid intake, energy balance and body weight gain of corticocerebellar lesions involving, primarily, the Lobulus VI (LVI) or the Lobulus Paramedianus (LP). The results showed that the lesions of LVI or LP did not affect the daily intake of total fluid and salty solution. The intake of sweet solution increased in both groups of lesioned rats, while the intake of deionized water and acid and bitter solutions decreased only in the LVI lesioned rats. Food intake decreased in the LVI-lesioned rats but not in the LP-lesioned animals. Body weight gain, efficiency of food utilization, caloric intake and body surface gain decreased in both groups. It seems therefore that the cerebellar cortex, which probably receives taste fibers, somehow influences taste preferences and water intake, and that it may be involved in the mechanisms of food intake, its utilization and body energy balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号