首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple route to the introduction of a number of chemoselective functional groups into peptoids (oligo(N-substituted glycines)) by an extension of the standard solid-phase submonomer method is reported. The following groups were introduced: aminooxyacetamide, N-(carbamoylmethyl)acetohydrazide, mercaptoacetamide, 2-pyridinesulfenylmercaptoacetamide, and aldehyde-terminated peptoids. The method uses commercially available reagents, is fully compatible with standard peptoid submonomer synthesis conditions, is easily automated, and generates the desired functionalized peptoid in high yield and purity. Peptoids with suitable pairs of chemoselective ligation groups were joined in high yield.  相似文献   

2.
Peptoids, oligomers of N-substituted glycine, have been valuable targets for study and diverse application as peptidomimetics and as nanomaterials. Their conformational heterogeneity has made the study of peptoid structures using high-resolution analyses challenging, limiting our understanding of the physiochemical features that mediate peptoid folding. Here, we introduce a new method for the study of peptoid structure that relies on the environmentally sensitive fluorescence properties of 4-N,N-dimethylamino-1,8-naphthalimide (4-DMN). We have prepared a 4-DMN-functionalized primary amine that is compatible with the traditional submonomer peptoid synthesis methods and incorporated it sequence-specifically into 11 of 13 new peptoids. When included as a peptoid side chain modification, the fluorescence emission intensity of 4-DMN correlates with predictions of the fluorophore's local polarity within a putative structure. 4-DMN fluorescence is maximized when the fluorophore is placed in the middle of the hydrophobic face of an amphiphilic helical peptoid. When the fluorophore is placed near the peptoid terminus or on a polar face of an amphiphilic sequence, 4-DMN fluorescence is diminished. Disruption of the peptoid secondary structure or amphiphilicity also modulates 4-DMN fluorescence. The peptoids' helical secondary structures are moderately disrupted by inclusion of a 4-DMN-modified side chain as evaluated by changes in the peptoids' CD spectral features. This new method for peptoid structure evaluation should be a valuable complement to existing peptoid structural analysis tools.  相似文献   

3.
Peptoids are peptidomimetic oligomers composed of N-substituted glycine units. Their convenient synthesis enables strict control over the sequence of highly diverse monomers and is capable of generating extensive compound libraries. Recent studies are beginning to explore the relationship between peptoid sequence, structure and function. We describe new approaches to direct the conformation of the peptoid backbone, leading to secondary structures such as helices, loops, and turns. These advances are enabling the discovery of bioactive peptoids and will establish modules for the design and assembly of protein mimetics.  相似文献   

4.
Conformational control in peptoids, N-substituted glycines, is crucial for the design and synthesis of biologically-active compounds and atomically-defined nanomaterials. While there are a growing number of structural studies in solution, most have been performed with conformationally-constrained short sequences (e.g., sterically-hindered sidechains or macrocyclization). Thus, the inherent degree of heterogeneity of unconstrained peptoids in solution remains largely unstudied. Here, we explored the folding landscape of a series of simple peptoid tetramers in aqueous solution by NMR spectroscopy. By incorporating specific 13C-probes into the backbone using bromoacetic acid-2-13C as a submonomer, we developed a new technique for sequential backbone assignment of peptoids based on the 1,n-Adequate pulse sequence. Unexpectedly, two of the tetramers, containing an N-(2-aminoethyl)glycine residue (Nae), had preferred conformations. NMR and molecular dynamics studies on one of the tetramers showed that the preferred conformer (52%) had a trans-cis-trans configuration about the three amide bonds. Moreover, >80% of the ensemble contained a cis amide bond at the central amide. The backbone dihedral angles observed fall directly within the expected minima in the peptoid Ramachandran plot. Analysis of this compound against similar peptoid analogs suggests that the commonly used Nae monomer plays a key role in the stabilization of peptoid structure via a side-chain-to-main-chain interaction. This discovery may offer a simple, synthetically high-yielding approach to control peptoid structure, and suggests that peptoids have strong intrinsic conformational preferences in solution. These findings should facilitate the predictive design of folded peptoid structures, and accelerate application in areas ranging from drug discovery to biomimetic nanoscience.  相似文献   

5.
Surfactant protein B (SP-B) is one of two helical, amphipathic proteins critical for the biophysical functioning of lung surfactant (LS) and hence is an important therapeutic protein. This small, complex 79mer has three internal disulfide bonds and homodimerizes via another disulfide bridge. A helical, amphipathic 25mer from the amino terminus (SP-B(1-25)) exhibits surface-active properties similar to those of full-length, synthetic SP-B. In previous work, we created helical, non-natural mimics of SP-B(1-25) based on sequence-specific peptoid 17mers and demonstrated their biomimetic surface activity. Like SP-B(1-25), the peptoids were designed to adopt helical structures with cationic and nonpolar faces. Here, we compare the surface activities of six different helical peptoid analogues of SP-B(1-25) to investigate the importance of mimicking its N-terminal insertion domain as well as its two arginine residues, both thought to be important for the peptide's proper function. Although the peptoid analogues of SP-B(1-25) studied here share many similar features and all functionally mimic SP-B(1-25) to some degree, it is notable that small differences in their sequences and side chain chemistries lead to substantial differences in their observed interactions with a lipid film. A peptoid comprising a hydrophobic, helical insertion region with aromatic side chains shows more biomimetic surface activity than simpler peptoids, and even better activity, by comparison to natural LS, than SP-B(1-25). However, the substitution of lysine-like side chains for arginine-like side chains in the peptoid has little effect on biomimetic surface activity, indicating that interactions of the guanidino groups with lipids may not be critical for the function of these SP-B mimics.  相似文献   

6.
7.
Peptidomimetics are great sources of protein ligands. The oligomeric nature of these compounds enables us to access large synthetic libraries on solid phase by using combinatorial chemistry. One of the most well studied classes of peptidomimetics is peptoids. Peptoids are easy to synthesize and have been shown to be proteolysis-resistant and cell-permeable. Over the past decade, many useful protein ligands have been identified through screening of peptoid libraries. However, most of the ligands identified from peptoid libraries do not display high affinity, with rare exceptions. This may be due, in part, to the lack of chiral centers and conformational constraints in peptoid molecules. Recently, we described a new synthetic route to access peptide tertiary amides (PTAs). PTAs are a superfamily of peptidomimetics that include but are not limited to peptides, peptoids and N-methylated peptides. With side chains on both α-carbon and main chain nitrogen atoms, the conformation of these molecules are greatly constrained by sterical hindrance and allylic 1,3 strain. (Figure 1) Our study suggests that these PTA molecules are highly structured in solution and can be used to identify protein ligands. We believe that these molecules can be a future source of high-affinity protein ligands. Here we describe the synthetic method combining the power of both split-and-pool and sub-monomer strategies to synthesize a sample one-bead one-compound (OBOC) library of PTAs.  相似文献   

8.
Peptoid origins     
Zuckermann RN 《Biopolymers》2011,96(5):545-555
Peptoid oligomers were initially developed as part of a larger basic research effort to accelerate the drug-discovery process in the biotech/biopharma industry. Their ease of synthesis, stability, and structural similarity to polypeptides made them ideal candidates for the combinatorial discovery of novel peptidomimetic drug candidates. Diverse libraries of short peptoid oligomers provided one of the first demonstrations in the mid-1990s that high-affinity ligands to pharmaceutically relevant receptors could be discovered from combinatorial libraries of synthetic compounds. The solid-phase submonomer method of peptoid synthesis was so efficient and general that it soon became possible to explore the properties of longer polypeptoid chains in a variety of areas beyond drug discovery (e.g., diagnostics, drug delivery, and materials science). Exploration into protein-mimetic materials soon followed, with the fundamental goal of folding a non-natural sequence-specific heteropolymer into defined secondary or tertiary structures. This effort first yielded the peptoid helix and much later the peptoid sheet, both of which are secondary-structure mimetics that are close relatives to their natural counterparts. These crucial discoveries have brought us closer to building proteinlike structure and function from a non-natural polymer and have provided great insight into the rules governing polymer and protein folding. The accessibility of peptoid synthesis to chemists and nonchemists alike, along with a lack of information-rich non-natural polymers available to study, has led to a rapid growth in the field of peptoid science by many new investigators. This work provides an overview of the initial discovery and early developments in the peptoid field.  相似文献   

9.
Synthetic polymers mimicking antimicrobial peptides have drawn considerable interest as potential therapeutics. N-substituted glycines, or peptoids, are recognized by their in vivo stability and ease of synthesis. Peptoids are thought to act primarily on the negatively charged lipids that are abundant in bacterial cell membranes. A mechanistic understanding of lipid–peptoid interaction at the molecular level will provide insights for rational design and optimization of peptoids. Here, we highlight recent studies that utilize synchrotron liquid surface X-ray scattering to characterize the underlying peptoid interactions with bacterial and eukaryotic membranes. Cellular membranes are highly complex, and difficult to characterize at the molecular level. Model systems including Langmuir monolayers, are used in these studies to reduce system complexity. The general workflow of these systems and the corresponding data analysis techniques are presented alongside recent findings. These studies investigate the role of peptoid physicochemical characteristics on membrane activity. Specifically, the roles of cationic charge, conformational constraint via macrocyclization, and hydrophobicity are shown to correlate their membrane interactions to biological activities in vitro. These structure–activity relationships have led to new insights into the mechanism of action by peptoid antimicrobials, and suggest optimization strategies for future therapeutics based on peptoids.  相似文献   

10.
Peptoids are peptidomimetic oligomers that predominantly harness similarities to peptides for biomimetic functionality. They have potential for use in biomedical applications and biosensors due to resistance to proteolytic degradation and low immunogenicity. The incorporation of chiral, aromatic side chains in the peptoid sequence allows for the formation of distinct secondary structures and self-assembly into supramolecular assemblies, including microspheres. Peptoid microspheres can be coated onto substrates for potential use in biosensor technologies, tissue engineering platforms, and drug-delivery systems. In order to be useful for these applications, the peptoid coatings must be robust under physiological conditions. In this study, we report the effects of various conditions on the peptoid microsphere coatings, including (i) helicity, (ii) temperature, (iii) pH, and (iv) ionic strength. These studies show that microsphere size decreases with increasing peptoid helicity and the positively charged side chains are positioned on the outside of the microspheres. The peptoid microsphere coatings are robust under physiological conditions but degrade in acidic conditions (pH < 7) and at low ionic strengths (<150 μM).  相似文献   

11.
N-hydroxy amides can be found in many naturally occurring and synthetic compounds and are known to act as both strong proton donors and chelators of metal cations. We have initiated studies of peptoids, or N-substituted glycines which contain N-hydroxy amide side chains to investigate the potential effects of these functional groups on peptoid backbone amide rotamer equilibria and local conformations. We reasoned that the propensity of these functional groups to participate in hydrogen bonding could be exploited to enforce intramolecular or intermolecular interactions that yield new peptoid structures. Here, we report the design, synthesis, and detailed conformational analysis of a series of model N-hydroxy peptoids. These peptoids were readily synthesized, and their structures were analyzed in solution by 1D and 2D NMR and in the solid-state by X-ray crystallography. The N-hydroxy amides were found to strongly favor trans conformations with respect to the peptoid backbone in chloroform. More notably, unique sheet-like structures held together via intermolecular hydrogen bonds were observed in the X-ray crystal structures of an N-hydroxy amide peptoid dimer, which to our knowledge represent the first structure of this type reported for peptoids. These results suggest that the N-hydroxy amide can be utilized to control both local backbone geometries and longer-range intermolecular interactions in peptoids, and represents a new functional group in the peptoid design toolbox.  相似文献   

12.
Peptoids are versatile peptidomimetic molecules with wide-ranging applications from drug discovery to materials science. An understanding of peptoid sequence features that contribute to both their three-dimensional structures and their interactions with lipids will expand functions of peptoids in varied fields. Furthermore, these topics capture the enthusiasm of undergraduate students who prepare and study diverse peptoids in laboratory coursework and/or in faculty led research. Here, we present the synthesis and study of 21 peptoids with varied functionality, including 19 tripeptoids and 2 longer oligomers. We observed differences in fluorescence spectral features for 10 of the tripeptoids that correlated with peptoid flexibility and relative positioning of chromophores. Interactions of representative peptoids with sonicated glycerophospholipid vesicles were also evaluated using fluorescence spectroscopy. We observed evidence of conformational changes effected by lipids for select peptoids. We also summarize our experiences engaging students in peptoid-based projects to advance both research and undergraduate educational objectives in parallel.  相似文献   

13.
Surfactant protein C (SP-C) is an important constituent of lung surfactant (LS) and, along with SP-B, is included in exogenous surfactant replacement therapies for treating respiratory distress syndrome (RDS). SP-C's biophysical activity depends upon the presence of a rigid C-terminal helix, of which the secondary structure is more crucial to functionality than precise side-chain chemistry. SP-C is highly sequence-conserved, suggesting that the β-branched, aliphatic side chains of the helix are also important. Nonnatural mimics of SP-C were created using a poly-N-substituted glycine, or “peptoid,” backbone. The mimics included varying amounts of α-chiral, aliphatic side chains and α-chiral, aromatic side chains in the helical region, imparting either biomimicry or structural rigidity. Biophysical studies confirmed that the peptoids mimicked SP-C's secondary structure and replicated many of its surface-active characteristics. Surface activity was optimized by incorporating both structurally rigid and biomimetic side chain chemistries in the helical region indicating that both characteristics are important for activity. By balancing these features in one mimic, a novel analogue was created that emulates SP-C's in vitro surface activity while overcoming many of the challenges related to natural SP-C. Peptoid-based analogues hold great potential for use in a synthetic, biomimetic LS formulation for treating RDS.  相似文献   

14.
Herein is reported the optimized solid-phase synthesis of a library of 5,120 trimeric N-alkylglycines (peptoids) using the positional scanning format and the submonomer strategy. Diversity at the N-terminal position was generated from 20 commercially available primary amines, whereas 16 primary amines were employed for the middle and C-terminal positions of the trimers. Formation of undesirable side-products observed in a previous library synthesis (Humet, M. et al. J. Comb. Chem. 2003, 5, 597-605) was averted by restricting the use of primary amines functionalized with tertiary amino groups to the third amination step. Screening of the new library for the identification of chemosensitizers yielded two peptoids, compounds 1 and 2, with potent in vitro activity as multidrug resistance (MDR) reversal agents. The structures of the lead peptoids are consistent with a pharmacophore model generated from the interaction of various known inhibitors with the MDR-implicated transmembrane glycoprotein P-gp.  相似文献   

15.
For many therapeutic applications, it has become more and more important to find synthetic compounds that have the ability to transport a variety of drugs and cargo molecules into cells and tissues. Like arginine-rich cell-penetrating peptides (CPPs), it is already known that peptide mimetics such as beta-peptides and peptoids can also express a transport function. In this study, ten fluorophore-labeled chiral and achiral peptoids with different backbone lengths and side chains as well as three peptoids coupled to a therapeutically active porphyrin moiety were prepared using a highly modular solid-phase synthesis (SPP) approach. To compare the structural determinants with the cellular uptake efficiency, all peptoids were analyzed by live cell imaging. All cells show an even vesicular distribution of the internalized peptoids, also revealing that a vesicular escape into the cytosol was stronger for peptoids with longer backbones. Moreover, the uptake efficiency correlated with both the incubation time and the given concentration. Toxicology tests and uptake experiments with porphyrin-coupled peptoids indicate their suitability for application as robust and readily available drug delivery systems or intracellular probes.  相似文献   

16.
Poly-N-substituted glycines or "peptoids" are protease-stable peptide mimics. Although the peptoid backbone is achiral and lacks hydrogen-bond donors, substitution with alpha-chiral side chains can drive the formation of stable helices that give rise to intense CD spectra. To systematically study the solution properties and stability of water-soluble peptoid helices with alpha-chiral side chains, we have synthesized and characterized an amphipathic, 36-residue N-substituted glycine oligomer. CD was used to investigate effects of concentration and solvent environment on this helical peptoid. We saw no significant dependence of helical structure on concentration. Intense, "alpha-helix-like" CD spectra were observed for the 36-mer in aqueous, 2,2,2-trifluorethanol (TFE), and methanol solution, proving a relative insensitivity of peptoid helical structure to solvent environment. While CD spectra taken in these different solvents were fundamentally similar in shape, we did observe some interesting differences in the intensities of particular CD bands in the various solvents. For example, the addition of TFE to an aqueous solvent increases the degree of peptoid helicity, as is observed for polypeptide alpha-helices. Moreover, the helical structure of peptoids appears to be virtually unaffected by heat, even in an aqueous buffer containing 8 M urea. The extraordinary resistance of these peptoid helices to denaturation is consistent with a dominant role of steric forces in their structural stabilization. The structured polypeptoids studied here may have potential as robust mimics of helical polypeptides of therapeutic interest.  相似文献   

17.
Peptoids, oligomers of N-substituted glycines, have been attracting increasing interest due to their advantageous properties as peptidomimetics. However, due to the lack of chiral centers and amide hydrogen atoms, peptoids, in general, do not form folding structures except that they have α-chiral side chains. We have recently developed “peptoids with backbone chirality” as a new class of peptoid foldamers called α-ABpeptoids and demonstrated that they could have folding conformations owing to the methyl groups on chiral α-carbons in the backbone structure. Here we report α-ABpeptoid/β3-peptide oligomers as a unique peptidomimetic structure with a heterogeneous backbone. This hybrid structure contains a mixed α-ABpeptoid and β3-peptide residues arranged in an alternate manner. These α-ABpeptoid/β3-peptide oligomers could form intramolecular hydrogen bonding and have better cell permeability relative to pure peptide sequences. These oligomers were shown to adopt ordered folding structures based on circular dichroism studies. Overall, α-ABpeptoid/β3-peptide oligomers may represent a novel class of peptidomimetic foldamers and will find a wide range of applications in biomedical and material sciences.  相似文献   

18.
Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents.  相似文献   

19.
Due to the branched structure feature and unique properties, a variety of star-shaped polymers have been designed and synthesized. Despite those advances, solid-phase synthesis of star-shaped sequence-defined synthetic polymers that exhibit hierarchical self-assembly remains a significant challenge. Hence, we present an effective strategy for the solid-phase synthesis of three-armed star-shaped peptoids, in which ethylenediamine was used as the centric star pivot. Based on the sequence of monomer addition, a series of AA′A′′-type and ABB′-type peptoids were synthesized and characterized by UPLC-MS (ultrahigh performance liquid chromatography-mass spectrometry). By taking advantage of the easy-synthesis and large side-chain diversity, we synthesized star-shaped peptoids with tunable functions. We further demonstrated the aqueous self-assembly of some representative peptoids into biomimetic nanomaterials with well-defined hierarchical structures, such as nanofibers and nanotubes. These results indicate that star-shaped peptoids offer the potential in self-assembly of biomimetic nanomaterials with tunable chemistries and functions.  相似文献   

20.
Peptoid oligomers possess many desirable attributes bioactive peptidomimetic agents, including their ease of synthesis, chemical diversity, and capability for molecular recognition. Ongoing efforts to develop functional peptoids will necessitate improved capability for control of peptoid structure, particularly of the backbone amide conformation. We introduce alkoxyamines as a new reagent for solid phase peptoid synthesis. Herein, we describe the synthesis of N-alkoxy peptoids, and present NMR data indicating that the oligomers adopt a single stable conformation featuring trans amide bonds. These findings, combined with results from computational modeling, suggest that N-alkoxy peptoid oligomers have a strong propensity to adopt a polyproline II type secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号