首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The avian family Picidae, which is nearly global in distribution, contains the piculets (Picumninae and Nesoctitinae), the woodpeckers (Picinae), and the wrynecks (Jynginae). However, the phylogenetic relationships within the Picidae remain obscure for most genera. In the present study, the complete mitochondrial genome of Picumnus innominatus was determined and described, which was the first complete mitogenome reported in the Picumnus. The circular mitogenome of P. innominatus was 17,180 bp in size and consisted of 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNA genes, a control region (CR), and a noncoding region. The gene order and arrangement of the P. innominatus mitogenome were identical to other mitogenomes of the Picidae. Moreover, strikingly large tandem repeats were found in the noncoding region of the P. innominatus mitogenome, which have not yet been covered in other picid species to date. At the family level (Picidae), the highest dN/dS ratio was detected for the ND1 gene (1.38726) among 13 PCGs, indicating that positive selection was powerful for this gene. Bayesian and Maximum Likelihood phylogenetic analyses based on the combination of 12S rRNA and CYTB gene supported strongly that the Picumninae is monophyletic.  相似文献   

2.
Phylogenetic analysis of different regions of the mitochondrial genome of the sable showed the presence of several topologies of phylogenetic trees, but the most statistically significant topology is A-BC, which was obtained as a result of the analysis of the mitochondrial genome as a whole, as well as of the individual CO1, ND4, and ND5 genes. Analysis of the intergroup divergence of the mtDNA haplotypes (D xy) indicated that the maximum D xy values between A and BC groups were accompanied by minimum differences between B and C groups only for six genes showing the A-BC topology (12S rRNA, CO1, CO2, ND4, ND5, and CYTB). It is assumed that the topological conflicts observed in the analysis of individual sable mtDNA genes are associated with the uneven distribution of mutations along the mitochondrial genome and the mitochondrial tree. This may be due to random causes, as well as the nonuniform effect of selection.  相似文献   

3.
Mitochondrial (mt) genes are some of the most popular and widely-utilized genetic loci in phylogenetic studies of metazoan taxa. However, their linked nature has raised questions on whether using the entire mitogenome for phylogenetics is overkill (at best) or pseudoreplication (at worst). Moreover, no studies have addressed the comparative phylogenetic utility of mitochondrial genes across individual lineages within the entire Metazoa. To comment on the phylogenetic utility of individual mt genes as well as concatenated subsets of genes, we analyzed mitogenomic data from 1865 metazoan taxa in 372 separate lineages spanning genera to subphyla. Specifically, phylogenies inferred from these datasets were statistically compared to ones generated from all 13 mt protein-coding (PC) genes (i.e., the “supergene” set) to determine which single genes performed “best” at, and the minimum number of genes required to, recover the “supergene” topology. Surprisingly, the popular marker COX1 performed poorest, while ND5, ND4, and ND2 were most likely to reproduce the “supergene” topology. Averaged across all lineages, the longest ∼2 mt PC genes were sufficient to recreate the “supergene” topology, although this average increased to ∼5 genes for datasets with 40 or more taxa. Furthermore, concatenation of the three “best” performing mt PC genes outperformed that of the three longest mt PC genes (i.e, ND5, COX1, and ND4). Taken together, while not all mt PC genes are equally interchangeable in phylogenetic studies of the metazoans, some subset can serve as a proxy for the 13 mt PC genes. However, the exact number and identity of these genes is specific to the lineage in question and cannot be applied indiscriminately across the Metazoa.  相似文献   

4.
The mammoths originated in warm and equatorial Africa and later colonized cold and high‐latitude environments. Studies on nuclear genes suggest that woolly mammoth had evolved genetic variations involved in processes relevant to cold tolerance, including lipid metabolism and thermogenesis, and adaptation to extremely varied light and darkness cycles. The mitochondria is a major regulator of cellular energy metabolism, thus the mitogenome of mammoths may also exhibit adaptive evolution. However, little is yet known in this regard. In this study, we analyzed mitochondrial protein‐coding genes (MPCGs) sequences of 75 broadly distributed woolly mammoths (Mammuthus primigenius) to test for signatures of positive selection. Results showed that a total of eleven amino acid sites in six genes, namely ND1, ND4, ND5, ND6, CYTB, and ATP6, displayed strong evidence of positive selection. Two sites were located in close proximity to proton‐translocation channels in mitochondrial complex I. Biochemical and homology protein structure modeling analyses demonstrated that five amino acid substitutions in ND1, ND5, and ND6 might have influenced the performance of protein–protein interaction among subunits of complex I, and three substitutions in CYTB and ATP6 might have influenced the performance of metabolic regulatory chain. These findings suggest metabolic adaptations in the mitogenome of woolly mammoths in relation to extreme environments and provide a basis for further tests on the significance of the variations on other systems.  相似文献   

5.
The complete mitogenome of the horse stomach bot fly Gasterophilus pecorum (Fabricius) and a near-complete mitogenome of Wohlfahrt''s wound myiasis fly Wohlfahrtia magnifica (Schiner) were sequenced. The mitogenomes contain the typical 37 mitogenes found in metazoans, organized in the same order and orientation as in other cyclorrhaphan Diptera. Phylogenetic analyses of mitogenomes from 38 calyptrate taxa with and without two non-calyptrate outgroups were performed using Bayesian Inference and Maximum Likelihood. Three sub-analyses were performed on the concatenated data: (1) not partitioned; (2) partitioned by gene; (3) 3rd codon positions of protein-coding genes omitted. We estimated the contribution of each of the mitochondrial genes for phylogenetic analysis, as well as the effect of some popular methodologies on calyptrate phylogeny reconstruction. In the favoured trees, the Oestroidea are nested within the muscoid grade. Relationships at the family level within Oestroidea are (remaining Calliphoridae (Sarcophagidae (Oestridae, Pollenia + Tachinidae))). Our mito-phylogenetic reconstruction of the Calyptratae presents the most extensive taxon coverage so far, and the risk of long-branch attraction is reduced by an appropriate selection of outgroups. We find that in the Calyptratae the ND2, ND5, ND1, COIII, and COI genes are more phylogenetically informative compared with other mitochondrial protein-coding genes. Our study provides evidence that data partitioning and the inclusion of conserved tRNA genes have little influence on calyptrate phylogeny reconstruction, and that the 3rd codon positions of protein-coding genes are not saturated and therefore should be included.  相似文献   

6.
This study, aimed at testing the hypothesis that some mitochondrial genes can serve as species-specific markers, involved a comparison of the sequence variance of selected mitochondrial DNA genes of the Arctic Contracaecum osculatum species (C. osculatum A, C. osculatum B and C. osculatum C). We compared differences between five complete (ND2, CYTB, ND3, ND4L and ND6) and three partial (CO1, CO3 and ND5) protein-coding genes. The total length of the sequence of each of the 13 specimens was 4830?bp. The sample consisted of C. osculatum L3 larvae collected from Reinhardtius hippoglossoides and Gadus ogac from the Barents Sea and Davis Strait. The K2P distance values between the species ranged within 0.06-0.12, the intraspecific variability (0.01-0.03) proving 3-6 times lower. The lowest interspecific divergence was observed between C. osculatum A and C. osculatum B, whereas the highest intraspecific diversity was typical of C. osculatum C. Among the C. osculatum species studied, the highest nucleotide diversity was recorded in the CYTB, CO3 and ND5 genes. These genes may be useful in species identification of the very closely related Contracaecum sibling species.  相似文献   

7.
The phylogenetic relationships of primates have been extensively investigated, but key issues remain unresolved. Complete mitochondrial genome (mitogenome) data have many advantages in phylogenetic analyses, but such data are available for only 46 primate species. In this work, we determined the complete mitogenome sequence of the black-capped capuchin (Cebus apella). The genome was 16,538 bp in size and consisted of 13 protein-coding genes, 22 tRNAs, two rRNAs and a control region. The genome organization, nucleotide composition and codon usage did not differ significantly from those of other primates. The control region contained several distinct repeat motifs, including a putative termination-associated sequence (TAS) and several conserved sequence blocks (CSB-F, E, D, C, B and 1). Among the protein-coding genes, the COII gene had lower nonsynonymous and synonymous substitutions rates while the ATP8 and ND4 genes had higher rates. A phylogenetic analysis using Maximum likelihood and Bayesian methods and the complete mitogenome data for platyrrhine species confirmed the basal position of the Callicebinae and the sister relationship between Atelinae and Cebidae, as well as the sister relationship between Aotinae (Aotus) and Cebinae (Cebus/Saimiri) in Cebidae. These conclusions agreed with the most recent molecular phylogenetic investigations on primates. This work provides a framework for the use of complete mitogenome information in phylogenetic analyses of the Platyrrhini and primates in general.  相似文献   

8.
Many phylogenetic questions in the Ciconiiformes remain unresolved and complete mitogenome data are urgently needed for further molecular investigation. In this work, we determined the complete mitogenome sequence of the little egret (Egretta garzetta). The genome was 17,361 bp in length and the gene organization was typical of other avian mtDNA. In protein-coding genes (PCGs), a C insertion was found in ND3, and COIII and ND4 terminated with incomplete stop codons (T). tRNA-Val and tRNA-Ser (AGY) were unable to fold into canonical cloverleaf secondary structures because they had lost the DHU arms. Long repetitive sequences consisting of five types of tandem repeats were found at the 3′ end of Domain III in the control region. A phylogenetic analysis of 11 species of Ciconiiformes was done using complete mitogenome data and 12 PCGs. The tree topologies obtained with these two strategies were identical, which strongly confirmed the monophyly of Ardeidae, Threskiorothidae and Ciconiidae. The phylogenetic analysis also revealed that Egretta was more closely related to Ardea than to Nycticorax in the Ardeidae, and Platalea was more closely related to Threskiornis than to Nipponia in the Threskiornithidae. These findings contribute to our understanding of the phylogenetic relationships of Ciconiiformes based on complete mitogenome data.  相似文献   

9.
Spiders, scorpions, mites and ticks (chelicerates) form one of the most diverse groups of arthropods on land, but their origin and times of diversification are not yet established. We estimated, for the first time, the molecular divergence times for these chelicerates using complete mitochondrial sequences from 25 taxa. All mitochondrial genes were evaluated individually or after concatenation. Sequences belonging to three missing genes (ND3, 6, and tRNA-Asp) from three taxa, as well as the faster-evolving ribosomal RNAs (12S and 16S), tRNAs, and the third base of each codon from 11 protein-coding genes (PCGs) (COI-III, CYTB, ATP8, 6, ND1-2, 4L, and 4-5), were identified and removed. The remaining concatenated sequences from 11 PCGs produced a completely resolved phylogenetic tree and confirmed that all chelicerates are monophyletic. Removing the third base from each codon was essential to resolve the phylogeny, which allowed deep divergence times to be calculated using three nodes calibrated with upper and lower priors. Our estimates indicate that the orders and classes of spiders, scorpions, mites, and ticks diversified in the late Paleozoic, much earlier than previously reported from fossil date estimates. The divergence time estimated for ticks suggests that their first land hosts could have been amphibians rather than reptiles. Using molecular data, we separated the spider-scorpion clades and estimated their divergence times at 397 ± 23 million years ago. Algae, fungi, plants, and animals, including insects, were well established on land when these chelicerates diversified. Future analyses, involving mitochondrial sequences from additional chelicerate taxa and the inclusion of nuclear genes (or entire genomes) will provide a more complete picture of the evolution of the Chelicerata, the second most abundant group of animals on earth. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Qin F  Jiang GF  Zhou SY 《Mitochondrial DNA》2012,23(2):123-125
In this study, we sequenced the complete mitochondrial genome of Teinopalpus aureus guangxiensis (Lepidoptera: Papilionidae), which is considered as an endemic species in China. It is listed as a vulnerable species by International Union for Conservation of Nature and Natural Resources Red List and also a first class endangered species in China. The complete mtDNA from T. aureus guangxiensis was 15,235 base pairs in length and contained 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The T. aureus guangxiensis genes were in the same order and orientation as the completely sequenced mitogenomes of other lepidopteran species. All PCGs of T. aureus guangxiensis mitogenome start with a typical ATN codon and terminate in the common stop codon TAA, except that ND1 gene uses TTA, ND3 gene uses ATT, and ND4 and ND4L gene use TAA. The phylogenetic relationships were reconstructed with the concatenated sequences of the 13 PCGs of the mitochondrial genome, and phylogenetic results confirmed that Nymphalidae, Lycaenidae, Papilionidae, Pieridae are monophyletic clades.  相似文献   

11.
Analysis of complete mitochondrial genome sequences is becoming increasingly common in genetic studies. The availability of full genome datasets enables an analysis of the information content distributed throughout the mitochondrial genome in order to optimize the research design of future evolutionary studies. The goal of our study was to identify informative regions of the human mitochondrial genome using two criteria: (1) accurate reconstruction of a phylogeny and (2) consistent estimates of time to most recent common ancestor (TMRCA). We created two series of datasets by deleting individual genes of varied length and by deleting 10 equal-size fragments throughout the coding region. Phylogenies were statistically compared to the full-coding-region tree, while coalescent methods were used to estimate the TMRCA and associated credible intervals. Individual fragments important for maintaining a phylogeny similar to the full-coding-region tree encompassed bp 577-2122 and 11,399-16,023, including all or part of 12S rRNA, 16S rRNA, ND4, ND5, ND6, and cytb. The control region only tree was the most poorly resolved with the majority of the tree manifest as an unresolved polytomy. Coalescent estimates of TMRCA were less sensitive to removal of any particular fragment(s) than reconstruction of a consistent phylogeny. Overall, we discovered that half the genome, i.e., bp 3669-11,398, could be removed with no significant change in the phylogeny (p(AU)=0.077) while still maintaining overlap of TMRCA 95% credible intervals. Thus, sequencing a contiguous fragment from bp 11,399 through the control region to bp 3668 would create a dataset that optimizes the information necessary for phylogenetic and coalescent analyses and also takes advantage of the wealth of data already available on the control region.  相似文献   

12.
To help determine whether the typical arthropod arrangement was a synapomorphy for the whole Tettigoniidae, we sequenced the mitochondrial genome (mitogenome) of the quiet-calling katydids, Xizicus fascipes (Orthoptera: Tettigoniidae: Meconematinae). The 16,166-bp nucleotide sequences of X. fascipes mitogenome contains the typical gene content, gene order, base composition, and codon usage found in arthropod mitogenomes. As a whole, the X. fascipes mitogenome contains a lower A+T content (70.2%) found in the complete orthopteran mitogenomes determined to date. All protein-coding genes started with a typical ATN codon. Ten of the 13 protein-coding genes have a complete termination codon, but the remaining three genes (COIII, ND5 and ND4) terminate with incomplete T. All tRNAs have the typical clover-leaf structure of mitogenome tRNA, except for tRNA(Ser(AGN)), in which lengthened anticodon stem (9 bp) with a bulged nuleotide in the middle, an unusual T-stem (6 bp in constrast to the normal 5 bp), a mini DHU arm (2 bp) and no connector nucleotides. In the A+T-rich region, two (TA)n conserved blocks that were previously described in Ensifera and two 150-bp tandem repeats plus a partial copy of the composed at 61 bp of the beginning were present. Phylogenetic analysis found: i) the monophyly of Conocephalinae was interrupted by Elimaea cheni from Phaneropterinae; and ii) Meconematinae was the most basal group among these five subfamilies.  相似文献   

13.
Kim I  Cha SY  Yoon MH  Hwang JS  Lee SM  Sohn HD  Jin BR 《Gene》2005,353(2):155-168
The complete nucleotide sequences of the mitochondrial genome (mitogenome) of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae), were determined. The 15,521-bp-long G. orientalis mitogenome contains typical gene complement, base composition, and codon usage found in metazoan mitogenomes. The G. orientalis mitogenome contains the third lowest A+T content (70.5%) among the complete insects mt genome sequences. The initiation codon for the G. orientalis COI gene appears to be ATG, instead of the tetranucleotides, which have been postulated to act as initiation codon for Locusta migratoria and some lepidopteran COI genes. The initiation codon for ND2 appears to be GTG, which is rare, but has been designated as an initiator of Tricholepidion gertschi ND2. All anticodons of G. orientalis tRNAs were identical to Drosophila yakuba and L. migratoria. The tRNA(Ser)(AGN) could not form a stable stem loop structure in the DHU arm as shown in many other insect tRNA(Ser)(AGN). Phylogenetic analysis of nucleotide sequence information from all mt genes supported a monophyletic Diptera, a monophyletic Lepidoptera, a monophyletic Coleoptera, a monophyletic Mecopterida (Diptera+Lepidoptera), and a monophyletic Endopterygota (Diptera+Lepidoptera+Coleoptera), suggesting that the complete insect mitogenome sequence has a resolving power to the diversification events within Endopterygota. However, the relationships of ancient insect orders were unstable, indicating the limited use of mitogenome information at deeper phylogenetic depth.  相似文献   

14.
Bombycoidea comprises 10 families and 4723 species, and the phylogenetic relationships among families are still in debate. In this study, we have determined the complete mitochondrial genome (mitogenome) of Brahmaea porphyria. The 15,429-bp mitogenome contains a common set of 37 mitochondrial genes including 13 protein-coding genes, 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and an inferred control region, and shares the conserved gene rearrangement (trnM-trnI-trnQ) in most ditrysian mitogenomes. Moreover, we analysed the secondary structure for all the tRNA genes of B. porphyria and the preference of codon usage in the PCGs of B. porphyria. The putative 373-bp control region (CR) possesses three types of conserved elements, including ATAGA, Ploy-T stretch, and microsatellite-like elements. A phylogenetic analysis among available Bombycoidea mitogenomes using the concatenated 37 mitochondrial genes appears to support the hypothesis of (Sphingidae+Bombycidae)+Saturniidae and the relatively basal phylogenetic position of Brahmaeidae within Bombycoidea.  相似文献   

15.
We described the complete mitochondrial genome (mitogenome) of the Wagner’s mustached bat, Pteronotus personatus, a species belonging to the family Mormoopidae, and compared it with other published mitogenomes of bats (Chiroptera). The mitogenome of P. personatus was 16,570 bp long and contained a typically conserved structure including 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region (D-loop). Most of the genes were encoded on the H-strand, except for eight tRNA and the ND6 genes. The order of protein-coding and rRNA genes was highly conserved in all mitogenomes. All protein-coding genes started with an ATG codon, except for ND2, ND3, and ND5, which initiated with ATA, and terminated with the typical stop codon TAA/TAG or the codon AGA. Phylogenetic trees constructed using Maximum Parsimony, Maximum Likelihood, and Bayesian inference methods showed an identical topology and indicated the monophyly of different families of bats (Mormoopidae, Phyllostomidae, Vespertilionidae, Rhinolophidae, and Pteropopidae) and the existence of two major clades corresponding to the suborders Yangochiroptera and Yinpterochiroptera. The mitogenome sequence provided here will be useful for further phylogenetic analyses and population genetic studies in mormoopid bats.  相似文献   

16.
The Formosan termite Coptotermes formosanus Shiraki is a well-known invasive pest that causes severe damage to wooden structures in many parts of the world. Although several studies examined its phylogeographic patterns using a few mitochondrial genes, the phylogenetic relationships among C. formosanus are poorly understood because of the small number of mutations known among its mitochondrial genes. To provide a useful genetic tool for further analyses, we analyzed the complete mitochondrial genome sequence of C. formosanus using specimens collected from three isolated islands in the Ryukyu Archipelago of Japan. The circular mitogenome of these termites consisted of genes encoding 22 transfer RNAs, two ribosomal RNAs, and 13 mitochondrial proteins, as is the case for most animal mitochondrial genomes. The G + C content was 34.1%, and the total length varied slightly between 16,234 and 16,236 base pairs. The complete mitochondrial genomes of the three populations were more than 99.9% identical to each other and showed differences at six nucleotide positions. The COII, 12S rRNA, and 16S rRNA genes that are commonly used for phylogenetic analyses revealed only one substitution or no substitutions. The mitogenome sequences determined here should contribute to the design of new molecular markers for the clarification of the historical distribution process of C. formosanus and for further phylogenetic analyses with this and related termite species.  相似文献   

17.
Lu Bao  Yonghen Zhang  Xing Gu  Yuefang Gao  Youben Yu 《Genomics》2019,111(5):1043-1052
Zygaenidae comprises >1036 species, including many folivorous pests in agriculture. In the present study, the complete mitochondrial genome (mitogenome) of a major pest of tea trees, Eterusia aedea was determined. The 15,196-bp circular genome contained the common set of 37 mitochondrial genes (including 13 protein-coding genes, two rRNA genes, and 22 tRNA genes) and exhibited the similar genomic features to reported Zygaenidae mitogenome. Comparative analyses of Zygaenidae mitogenomes showed a typical evolutionary trend of lepidopteran mitogenomes. In addition, we also investigated the gene order of lepidopteran mitogenomes and proposed that the novel gene order trnA-trnR-trnN-trnE-trnS-trnF from Zygaenidae and Gelechiidae and most other gene rearrangements of this tRNA cluster evolved independently. Finally, the mitogenomic phylogeny of Lepidoptera was reconstructed based on multiple mitochondrial datasets. And all the phylogenetic results revealed the sister relationships of Cossoidea and Zygaenoidea with both BI and ML methods, which is the first stable mitogenomic evidence for this clade.  相似文献   

18.
Oceanic dolphins (Delphinidae) are the product of a rapid radiation that yielded ~36 extant species of small to medium-sized cetaceans that first emerged in the Late Miocene. Although they are a charismatic group of organisms that have become poster children for marine conservation, many phylogenetic relationships within Delphinidae remain elusive due to the slow molecular evolution of the group and the difficulty of resolving short branches from successive cladogenic events. Here I combine existing and newly generated sequences from four mitochondrial (mt) genes and 20 nuclear (nu) genes to reconstruct a well-supported phylogenetic hypothesis for Delphinidae. This study compares maximum-likelihood and Bayesian inference methods of several data sets including mtDNA, combined nuDNA, gene trees of individual nuDNA loci, and concatenated mtDNA+nuDNA. In addition, I contrast these standard phylogenetic analyses with the species tree reconstruction method of Bayesian concordance analysis (BCA). Despite finding discordance between mtDNA and individual nuDNA loci, the concatenated matrix recovers a completely resolved and robustly supported phylogeny that is also broadly congruent with BCA trees. This study strongly supports groupings such as Delphininae, Lissodelphininae, Globicephalinae, Sotalia+Delphininae, Steno+Orcaella+Globicephalinae, and Leucopleurus acutus, Lagenorhynchus albirostris, and Orcinus orca as basal delphinid taxa.  相似文献   

19.
Because of the difficulties of constructing a robust phylogeny for Charadriiform birds using morphological characters, recent studies have turned to DNA sequences to resolve the systematic uncertainties of family-level relationships in this group. However, trees constructed using nuclear genes or the mitochondrial Cytochrome b gene suggest deep-level relationships of shorebirds that differ from previous studies based on morphology or DNA-DNA hybridization distances. To test phylogenetic hypotheses based on nuclear genes (RAG-1, myoglobin intron-2) and single mitochondrial genes (Cytochrome b), approximately 13,000 bp of mitochondrial sequence was collected for one exemplar species of 17 families of Charadriiformes plus potential outgroups. Maximum likelihood and Bayesian analyses show that trees constructed from long mitochondrial sequences are congruent with the nuclear gene topologies [Chardrii (Lari, Scolopaci)]. Unlike short mitochondrial sequences (such as Cytochrome b alone), longer sequences yield a well-supported phylogeny for shorebirds across various taxonomic levels. Examination of substitution patterns among mitochondrial genes reveals specific genes (especially ND5, ND4, ND2, and COI) that are better suited for phylogenetic analyses among shorebird families because of their relatively homogeneous nucleotide composition among lineages, slower accumulation of substitutions at third codon positions, and phylogenetic utility in both closely and distantly related lineages. For systematic studies of birds in which family and generic levels are examined simultaneously, we recommend the use of both nuclear and mitochondrial sequences as the best strategy to recover relationships that most likely reflect the phylogenetic history of these lineages.  相似文献   

20.
Few botanical studies have explored the potential of nuclear ribosomal DNA (nrDNA) and mitochondrial DNA (mtDNA) data obtained through genome skimming for phylogeny reconstruction. Here, we analyzed the phylogenetic information included in the nrDNA and mtDNA of 44 species of the “Adenocalymma‐Neojobertia” clade (Bignoniaceae). To deal with intraindividual polymorphisms within the nrDNA, different coding schemes were explored through the analyses of four datasets: (i) “nrDNA contig,” with base call following the majority rule; (ii) “nrDNA ambiguous,” with ambiguous base calls; (iii) “nrDNA informative,” with ambiguities converted to multistate characters; and, (iv) “mitochondrial,” with 39 mitochondrial genes. Combined analyses using the nrDNA and mtDNA data and previously published “plastid” datasets were also conducted. Trees were obtained using Maximum Likelihood and Bayesian criteria. The congruence among genomes was assessed. The nrDNA datasets were shown to be highly polymorphic within individuals, while the “mitochondrial” dataset was the least informative, with 0.36% of informative bases within the ingroup. The topologies inferred using the nrDNA and mtDNA datasets were broadly congruent with the tree derived from the analyses of the “plastid” dataset. The topological differences recovered were generally poorly supported. The topology that resulted from the analyses of the “combined” dataset largely resembles the “plastid” tree. These results highlight limitations of nuclear ribosomal DNA and mitochondrial genes for phylogeny reconstruction obtained through genome skimming and the need to include more data from both genomes. The different topologies observed among genomes also highlight the importance of exploring data from various genomes in plant phylogenetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号