首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manipulation of gene expression in tissues is required to perform functional studies. In this paper, we demonstrate the cerebroventricular microinjection (CVMI) technique as a means to modulate gene expression in the adult zebrafish brain. By using CVMI, substances can be administered into the cerebroventricular fluid and be thoroughly distributed along the rostrocaudal axis of the brain. We particularly focus on the use of antisense morpholino oligonucleotides, which are potent tools for knocking down gene expression in vivo. In our method, when applied, morpholino molecules are taken up by the cells lining the ventricular surface. These cells include the radial glial cells, which act as neurogenic progenitors. Therefore, knocking down gene expression in the radial glial cells is of utmost importance to analyze the widespread neurogenesis response in zebrafish, and also would provide insight into how vertebrates could sustain adult neurogenesis response. Such an understanding would also help the efforts for clinical applications in human neurodegenerative disorders and central nervous system regeneration. Thus, we present the cerebroventricular microinjection method as a quick and efficient way to alter gene expression and neurogenesis response in the adult zebrafish forebrain. We also provide troubleshooting tips and other useful information on how to carry out the CVMI procedure.  相似文献   

2.
3.
Adult neurogenesis is a widespread trait of vertebrates; however, the degree of this ability and the underlying activity of the adult neural stem cells differ vastly among species. In contrast to mammals that have limited neurogenesis in their adult brains,zebrafish can constitutively produce new neurons along the whole rostrocaudal brain axis throughout its life.This feature of adult zebrafish brain relies on the presence of stem/progenitor cells that continuously proliferate,and the permissive environment of zebrafish brain for neurogenesis. Zebrafish has also an extensive regenerative capacity, which manifests itself in responding to central nervous system injuries by producing new neurons to replenish the lost ones. This ability makes zebrafish a useful model organism for understanding the stem cell activity in the brain, and the molecular programs required for central nervous system regeneration.In this review, we will discuss the current knowledge on the stem cell niches, the characteristics of the stem/progenitor cells, how they are regulated and their involvement in the regeneration response of the adult zebrafish brain. We will also emphasize the open questions that may help guide the future research.  相似文献   

4.
《Developmental neurobiology》2017,77(10):1188-1205
Adult neurogenesis is a complex, presumably conserved phenomenon in vertebrates with a broad range of variations regarding neural progenitor/stem cell niches, cellular composition of these niches, migratory patterns of progenitors and so forth among different species. Current understanding of the reasons underlying the inter‐species differences in adult neurogenic potential, the identification and characterization of various neural progenitors, characterization of the permissive environment of neural stem cell niches and other important aspects of adult neurogenesis is insufficient. In the last decade, zebrafish has emerged as a very useful model for addressing these questions. In this review, we have discussed the present knowledge regarding the neural stem cell niches in adult zebrafish brain as well as their cellular and molecular attributes. We have also highlighted their similarities and differences with other vertebrate species. In the end, we shed light on some of the known intrinsic and extrinsic factors that are assumed to regulate the neurogenic process in adult zebrafish brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1188–1205, 2017  相似文献   

5.
6.
The zebrafish is a highly relevant model organism for understanding the cellular and molecular mechanisms involved in neurogenesis and brain regeneration in vertebrates. However, an in-depth analysis of the molecular mechanisms underlying zebrafish adult neurogenesis has been limited due to the lack of a reliable protocol for isolating and culturing neural adult stem/progenitor cells. Here we provide a reproducible method to examine adult neurogenesis using a neurosphere assay derived from zebrafish whole brain or from the telencephalon, tectum and cerebellum regions of the adult zebrafish brain. The protocol involves, first the microdissection of zebrafish adult brain, then single cell dissociation and isolation of self-renewing multipotent neural stem/progenitor cells. The entire procedure takes eight days. Additionally, we describe how to manipulate gene expression in zebrafish neurospheres, which will be particularly useful to test the role of specific signaling pathways during adult neural stem/progenitor cell proliferation and differentiation in zebrafish.  相似文献   

7.
Adult zebrafish have an amazing capacity to regenerate their central nervous system after injury. To investigate the cellular response and the molecular mechanisms involved in zebrafish adult central nervous system (CNS) regeneration and repair, we developed a zebrafish model of adult telencephalic injury.In this approach, we manually generate an injury by pushing an insulin syringe needle into the zebrafish adult telencephalon. At different post injury days, fish are sacrificed, their brains are dissected out and stained by immunohistochemistry and/or in situ hybridization (ISH) with appropriate markers to observe cell proliferation, gliogenesis, and neurogenesis. The contralateral unlesioned hemisphere serves as an internal control. This method combined for example with RNA deep sequencing can help to screen for new genes with a role in zebrafish adult telencephalon neurogenesis, regeneration, and repair.  相似文献   

8.
9.
Neurogenesis is widespread in the zebrafish adult brain through the maintenance of active germinal niches. To characterize which progenitor properties correlate with this extensive neurogenic potential, we set up a method that allows progenitor cell transduction and tracing in the adult zebrafish brain using GFP-encoding retro- and lentiviruses. The telencephalic germinal zone of the zebrafish comprises quiescent radial glial progenitors and actively dividing neuroblasts. Making use of the power of clonal viral vector-based analysis, we demonstrate that these progenitors follow different division modes and fates: neuroblasts primarily undergo a limited amplification phase followed by symmetric neurogenic divisions; by contrast, radial glia are capable at the single cell level of both self-renewing and generating different cell types, and hence exhibit bona fide neural stem cell (NSC) properties in vivo. We also show that radial glial cells predominantly undergo symmetric gliogenic divisions, which amplify this NSC pool and may account for its long-lasting maintenance. We further demonstrate that blocking Notch signaling results in a significant increase in proliferating cells and in the numbers of clones, but does not affect clone composition, demonstrating that Notch primarily controls proliferation rather than cell fate. Finally, through long-term tracing, we illustrate the functional integration of newborn neurons in forebrain adult circuitries. These results characterize fundamental aspects of adult progenitor cells and neurogenesis, and open the way to using virus-based technologies for stable genetic manipulations and clonal analyses in the zebrafish adult brain.  相似文献   

10.
In rodents, there is increasing evidence that nuclear progesterone receptors are transiently expressed in many regions of the developing brain, notably outside the hypothalamus. This suggests that progesterone and/or its metabolites could be involved in functions not related to reproduction, particularly in neurodevelopment. In this context, the adult fish brain is of particular interest, as it exhibits constant growth and high neurogenic activity that is supported by radial glia progenitors. However, although synthesis of neuroprogestagens has been documented recently in the brain of zebrafish, information on the presence of progesterone receptors is very limited. In zebrafish, a single nuclear progesterone receptor (pgr) has been cloned and characterized. Here, we demonstrate that this pgr is widely distributed in all regions of the zebrafish brain. Interestingly, we show that Pgr is strongly expressed in radial glial cells and more weakly in neurons. Finally, we present evidence, based on quantitative PCR and immunohistochemistry, that nuclear progesterone receptor mRNA and proteins are upregulated by estrogens in the brain of adult zebrafish. These data document for the first time the finding that radial glial cells are preferential targets for peripheral progestagens and/or neuroprogestagens. Given the crucial roles of radial glial cells in adult neurogenesis, the potential effects of progestagens on their activity and the fate of daughter cells require thorough investigation.  相似文献   

11.
The cerebellum, a structure derived from the dorsal part of the most anterior hindbrain, is important for integrating sensory perception and motor control. While the structure and development of the cerebellum have been analyzed most extensively in mammals,recent studies have shown that the anatomy and development of the cerebellum is conserved between mammals and bony fish (teleost) species, including zebrafish. In the mammalian and teleost cerebellum,Purkinje and granule cells serve, respectively, as the major GABAergic and glutamatergic neurons. Purkinje cells originate in the ventricular zone (VZ), and receive inputs from climbing fibers. Granule cells originate in the upper rhombic lip (URL) and receive inputs from mossy fibers. Thus, the teleost cerebellum shares many features with the cerebellum of other vertebrates, and isa good model system for studying cerebellar function and development. The teleost cerebellum also has features that are specific to teleosts or have not been elucidated in mammals, including eurydendroid cells and adult neurogenesis. Furthermore, the neural circuitry in part of the optic tectum and the dorsal hindbrain closely resembles the circuitry of the teleost cerebellum; hence,these are called cerebellum-like structures. Here we describe the anatomy and development of cerebellar neurons and their circuitry, and discuss the possible roles of the cerebellum and cerebellum-like structures in behavior and higher cognitive functions. We also consider the potential use of genetics and novel techniques for studying the cerebellum in zebrafish.  相似文献   

12.
Signaling in adult neurogenesis: from stem cell niche to neuronal networks   总被引:1,自引:0,他引:1  
The mechanisms that determine why neurogenesis is restricted to few regions of the adult brain in mammals, in contrast to its more widespread nature in other vertebrates such as zebrafish, remain to be fully understood. The local environment must provide key signals that instruct stem cell and neurogenic fate, because non-neurogenic progenitors can be instructed towards neurogenesis in this environment. Here, we discuss the recent progress in understanding key factors in the local stem cell niche of the adult mammalian brain, including surprising sources of new signals such as endothelial cells, complement factors and microglia. Moreover, new insights have been gained into how neuronal diversity is instructed in adult neurogenesis, prompting a new view of stem and progenitor cell heterogeneity in the adult mammalian brain.  相似文献   

13.
Severe traumatic injury to the adult mammalian CNS leads to life-long loss of function. By contrast, several non-mammalian vertebrate species, including adult zebrafish, have a remarkable ability to regenerate injured organs, including the CNS. However, the cellular and molecular mechanisms that enable or prevent CNS regeneration are largely unknown. To study brain regeneration mechanisms in adult zebrafish, we developed a traumatic lesion assay, analyzed cellular reactions to injury and show that adult zebrafish can efficiently regenerate brain lesions and lack permanent glial scarring. Using Cre-loxP-based genetic lineage-tracing, we demonstrate that her4.1-positive ventricular radial glia progenitor cells react to injury, proliferate and generate neuroblasts that migrate to the lesion site. The newly generated neurons survive for more than 3 months, are decorated with synaptic contacts and express mature neuronal markers. Thus, regeneration after traumatic lesion of the adult zebrafish brain occurs efficiently from radial glia-type stem/progenitor cells.  相似文献   

14.
The phenomenon of 'epimorphic regeneration', a complete reformation of lost tissues and organs from adult differentiated cells, has been fascinating many biologists for many years. While most vertebrate species including humans do not have a remarkable ability for regeneration, the lower vertebrates such as urodeles and fish have exceptionally high regeneration abilities. In particular, the teleost fish has a high ability to regenerate a variety of tissues and organs including scales, muscles, spinal cord and heart among vertebrate species. Hence, an understanding of the regeneration mechanism in teleosts will provide an essential knowledge base for rational approaches to tissue and organ regeneration in mammals. In the last decade, small teleost fish such as the zebrafish and medaka have emerged as powerful animal models in which a variety of developmental, genetic and molecular approaches are applicable. In addition, rapid progress in the development of genome resources such as expressed sequence tags and genome sequences has accelerated the speed of the molecular analysis of regeneration. This review summarizes the current status of our understanding of the cellular and molecular basis of regeneration, particularly that regarding fish fins.  相似文献   

15.
Non-visual opsins mediate various light-dependent physiological events. Our previous search for non-visual opsin genes in zebrafish led to the discovery of VAL-opsin (VAL-opsinA) in deep brain cells and retinal horizontal cells of the adult fish. In this study, we report the identification and characterization of its duplicated gene, VAL-opsinB, in zebrafish. A molecular phylogenetic analysis indicates that VAL-opsinB is orthologous to a previously reported salmon gene and that the duplication of the VAL-opsin gene occurred in the teleost lineage. The recombinant protein of zebrafish VAL-opsinB forms a green-sensitive photopigment when reconstituted with 11- cis -retinal. VAL-opsinB expression was detected in a limited number of cells of the brain and the eye, and the expression pattern is distinct from that of the VAL-opsinA gene. Such a differential expression pattern suggests that VAL-opsinA and VAL-opsinB are involved in different physiological events in zebrafish.  相似文献   

16.
Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs) that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI), RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs) and identified two– polyR and Trans – that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael’s addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.  相似文献   

17.
18.
We studied adult neurogenesis in the short‐lived annual fish Nothobranchius furzeri and quantified the effects of aging on the mitotic activity of the neuronal progenitors and the expression of glial fibrillary acid protein (GFAP) in the radial glia. The distribution of neurogenic niches is substantially similar to that of zebrafish and adult stem cells generate neurons, which persist in the adult brain. As opposed to zebrafish, however, the N. furzeri genome contains a doublecortin (DCX) gene. Doublecortin is transiently expressed by newly generated neurons in the telencephalon and optic tectum (OT). We also analyzed the expression of the microRNA miR‐9 and miR‐124 and found that they have complementary expression domains: miR‐9 is expressed in the neurogenic niches of the telencephalon and the radial glia of the OT, while miR‐124 is expressed in differentiated neurons. The main finding of this paper is the demonstration of an age‐dependent decay in adult neurogenesis. Using unbiased stereological estimates of cell numbers, we detected an almost fivefold decrease in the number of mitotically active cells in the OT between young and old age. This reduced mitotic activity is paralleled by a reduction in DCX labeling. Finally, we detected a dramatic up‐regulation of GFAP in the radial glia of the aged brain. This up‐regulation is not paralleled by a similar up‐regulation of S100B and Musashi‐1, two other markers of the radial glia. In summary, the brain of N. furzeri replicates two typical hallmarks of mammalian aging: gliosis and reduced adult neurogenesis.  相似文献   

19.
20.
Adult neurogenesis has been described in dozens of brain regions in teleost fish, with the largest number of new neurons being generated in the cerebellum. Here, we characterized the cerebellar neural stem/progenitor cells (NSPCs) in the brown ghost knifefish (Apteronotus leptorhynchus), an established model system of adult neurogenesis. The majority of the new cerebellar cells arise from neurogenic niches located medially, at the interface of the dorsal/ventral molecular layers and the granular layer. NSPCs within these niches give rise to transit‐amplifying progenitors which populate the molecular layer, where they continue to proliferate during their migration toward target areas in the granular layer. At any given time, the majority of proliferating cells are located in the molecular layer. Immunohistochemical staining revealed that the stem cell markers Sox2, Meis1/2/3, Islet1, and, to a lesser extent, Pax6, are widely expressed in all regions of the adult cerebellum. A large subpopulation of these NSPCs coexpress S100, GFAP, and/or vimentin, indicating astrocytic identity. This is further supported by the specific effect of the gliotoxin l ‐methionine sulfoximine, which leads to a targeted decrease in the number of GFAP+ cells that coexpress Sox2 or the proliferation marker PCNA. Pulse‐chase analysis of the label size associated with new cells after administration of 5‐bromo‐2′‐deoxyuridine demonstrated that, on average, two additional cell divisions occur after completion of the initial mitotic cycle. Overall numbers of NSPCs in the cerebellum niches increase consistently over time, presumably in parallel with the continuous growth of the brain. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 39–65, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号