首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Japanese encephalitis is a mosquito borne disease and is the leading cause of viral encephalitis in the Asia-Pacific area. The causative agent, Japanese encephalitis virus(JEV) can be phylogenetically classified into five genotypes based on nucleotide sequence. In recent years, genotype I(GI) has displaced genotype III(GIII) as the dominant lineage, but the mechanisms behind this displacement event requires elucidation. In an earlier study, we compared host variation over time between the two genotypes and observed that GI appears to have evolved to achieve more efficient infection in hosts in the replication cycle, with the tradeoff of reduced infectivity in secondary hosts such as humans. To further investigate this phenomenon, we collected JEV surveillance data on human cases and, together with sequence data, and generated genotype/case profiles from seven Asia-Pacific countries and regions to characterize the GI/GIII displacement event. We found that, when comprehensive and consistent vaccination and surveillance data was available, and the GIII to GI shift occurred within a well-defined time period, there was a statistically significant drop in JEV human cases. Our findings provide further support for the argument that GI is less effective in infecting humans, who represent a dead end host. However, experimental investigation is necessary to confirm this hypothesis. The study highlights the value of alternative approaches to investigation of epidemics, as well as the importance of effective data collection for disease surveillance and control.  相似文献   

3.
We evaluated three nonreplicating dengue virus type 2 (DENV-2) vaccines: (i) a DNA vaccine containing the prM-E gene region (D), (ii) a recombinant subunit protein vaccine containing the B domain (i.e., domain III) of the E protein as a fusion with the Escherichia coli maltose-binding protein (R), and (iii) a purified inactivated virus vaccine (P). Groups of four rhesus macaques each were primed once and boosted twice using seven different vaccination regimens. After primary vaccination, enzyme-linked immunosorbent assay (ELISA) antibody levels increased most rapidly for groups inoculated with the P and DP combination, and by 1 month after the second boost, ELISA titers were similar for all groups. The highest plaque reduction neutralization test (PRNT) titers were seen in those groups that received the DR/DR/DR combination (geometric mean titer [GMT], 510), the P/P/P vaccine (GMT, 345), the DP/DP/DP combination (GMT, 287), and the R/R/R vaccine (GMT, 200). The next highest titers were seen in animals that received the D/R/R vaccine (GMT, 186) and the D/P/P vaccine (GMT, 163). Animals that received the D/D/D vaccine had the lowest neutralizing antibody titer (GMT, 49). Both ELISA and PRNT titers declined at variable rates. The only significant protection from viremia was observed in the P-vaccinated animals (mean of 0.5 days), which also showed the highest antibody concentration, including antibodies to NS1, and highest antibody avidity at the time of challenge.  相似文献   

4.
Studies of herpes simplex virus type 1 (HSV-1) thymidine (dThd) kinase (TK) crystal structures show that purine and pyrimidine bases occupy distinct positions in the active site but approximately the same geometric plane. The presence of a bulky side chain, such as tyrosine at position 167, would not be sterically favorable for pyrimidine or pyrimidine nucleoside analogue binding, whereas purine nucleoside analogues would be less affected because they are located further away from the phenylalanine side chain. Site-directed mutagenesis of the conserved Ala-167 and Ala-168 residues in HSV-1 TK resulted in a wide variety of differential affinities and catalytic activities in the presence of the natural substrate dThd and the purine nucleoside analogue drug ganciclovir (GCV), depending on the nature of the amino acid mutation. A168H- and A167F-mutated HSV-1 TK enzymes turned out to have a virtually complete knock-out of dThd kinase activity (at least approximately 4-5 orders of magnitude lower) presumably due to a steric clash between the mutated amino acid and the dThd ring. In contrast, a full preservation of the GCV (and other purine nucleoside analogues) kinase activity was achieved for A168H TK. The enzyme mutants also markedly lost their binding capacity for dThd and showed a substantially diminished feedback inhibition by thymidine 5'-triphosphate. The side chain size at position 168 seems to play a less important role regarding GCV or dThd selectivity than at position 167. Instead, the nitrogen-containing side chains from A168H and A168K seem necessary for efficient ligand discrimination. This explains why A168H-mutated HSV-1 TK fully preserves its GCV kinase activity (Vmax/Km 4-fold higher than wild-type HSV-1 TK), although still showing a severely compromised dThd kinase activity (Vmax/Km 3-4 orders of magnitude lower than wild-type HSV-1 TK).  相似文献   

5.
The protein profiles of the New Guinea "C" dengue virus type 2 (DENV-2)prototype and those of a Brazilian DENV-2 isolated in the State of Rio de Janeiro in 1995 were compared. SDS-PAGE analysis showed that the virus from Rio de Janeiro expresses NS5 (93.0 kDa), NS3 (66.8 kDa) E (62.4 kDa) and NS1 (41.2 kDa) proteins differently from the New Guinea "C" virus. The immunoblot revealed specificity and antigenicity for the NS3 protein from DENV-2 Rio de Janeiro mainly in primary infections, convalescent cases, and in secondary infections in both cases and only antigenicity for E and NS1 proteins for both viruses in primary and secondary infections.  相似文献   

6.
Severe forms of dengue fever, dengue haemorrhagic fever, and dengue shock syndrome, were not prominent in the Americas until the epidemic of Cuba in 1981. Since that time, they have spread to other countries in Central and South America, correlating with the spread of dengue type 2 viruses related to Southeast Asian strains. We report here the complete genomic sequence of a dengue type 2 virus isolated during the epidemic in La Martinique in 1998. This constitutes the first complete genetic characterization of a dengue virus strain from French West Indies, and also the first molecular identification in this region of a dengue 2 strain phylogenetically related to the emerging American type 2 dengue viruses.  相似文献   

7.
The epitope determinants of chimpanzee Fab antibody 1A5, which have been shown to be broadly reactive to flaviviruses and efficient for cross-neutralization of dengue virus type 1 and type 2 (DENV-1 and DENV-2), were studied by analysis of DENV-2 antigenic variants. Sequence analysis showed that one antigenic variant contained a Gly-to-Val substitution at position 106 within the flavivirus-conserved fusion peptide loop of the envelope protein (E), and another variant contained a His-to-Gln substitution at position 317 in E. Substitution of Gly(106)Val in DENV-2 E reduced the binding affinity of Fab 1A5 by approximately 80-fold, whereas substitution of His(317)Gln had little or no effect on antibody binding compared to the parental virus. Treatment of DENV-2 with beta-mercaptoethanol abolished binding of Fab 1A5, indicating that disulfide bridges were required for the structural integrity of the Fab 1A5 epitope. Binding of Fab 1A5 to DENV-2 was competed by an oligopeptide containing the fusion peptide sequence as shown by competition enzyme-linked immunosorbent assay. Both DENV-2 antigenic variants were shown to be attenuated, or at least similar to the parental virus, when evaluated for growth in cultured cells or for neurovirulence in mice. Fab 1A5 inhibited low pH-induced membrane fusion of mosquito C6/36 cells infected with DENV-1 or DENV-2, as detected by reduced syncytium formation. Both substitutions in DENV-2 E lowered the pH threshold for membrane fusion, as measured in a fusion-from-within assay. In the three-dimensional structure of E, Gly(106) in domain II and His(317) in domain III of the opposite E monomer were spatially close. From the locations of these amino acids, Fab 1A5 appears to recognize a novel epitope that has not been mapped before with a flavivirus monoclonal antibody.  相似文献   

8.

Background

Dengue virus (DENV) is a significant public health threat in tropical and subtropical regions of the world. A therapeutic antibody against the viral envelope (E) protein represents a promising immunotherapy for disease control.

Methodology/Principal Findings

We generated seventeen novel mouse monoclonal antibodies (mAbs) with high reactivity against E protein of dengue virus type 2 (DENV-2). The mAbs were further dissected using recombinant E protein domain I-II (E-DI-II) and III (E-DIII) of DENV-2. Using plaque reduction neutralization test (PRNT) and mouse protection assay with lethal doses of DENV-2, we identified four serotype-specific mAbs that had high neutralizing activity against DENV-2 infection. Of the four, E-DIII targeting mAb DB32-6 was the strongest neutralizing mAb against diverse DENV-2 strains. Using phage display and virus-like particles (VLPs) we found that residue K310 in the E-DIII A-strand was key to mAb DB32-6 binding E-DIII. We successfully converted DB32-6 to a humanized version that retained potency for the neutralization of DENV-2 and did not enhance the viral infection. The DB32-6 showed therapeutic efficacy against mortality induced by different strains of DENV-2 in two mouse models even in post-exposure trials.

Conclusions/Significance

We used novel epitope mapping strategies, by combining phage display with VLPs, to identify the important A-strand epitopes with strong neutralizing activity. This study introduced potential therapeutic antibodies that might be capable of providing broad protection against diverse DENV-2 infections without enhancing activity in humans.  相似文献   

9.
Dengue virus type 4 (DENV-4) was first reported in the Americas in 1981, where it caused epidemics of dengue fever throughout the region. In the same year, the region's first epidemic of dengue hemorrhagic fever was reported, caused by an Asian strain of dengue virus type 2 (DENV-2) that was distinct from the American subtype circulating previously. Despite the importance of these epidemics, little is known about the rates or determinants of viral spread among island and mainland populations or their directions of movement. We employed a Bayesian coalescent approach to investigate the transmission histories of DENV-2 and DENV-4 since their introduction in 1981 and a parsimony method to assess patterns of strain migration. For both viruses there was an initial invasion phase characterized by an exponential increase in the number of DENV lineages, after which levels of genetic diversity remained constant despite reported fluctuations in DENV-2 and DENV-4 activity. Strikingly, viral lineage numbers increased far more rapidly for DENV-4 than DENV-2, indicative of a more rapid rate of exponential population growth in DENV-4 or a higher rate of geographic dispersal, allowing this virus to move more effectively among localities. We propose that these contrasting dynamics may reflect underlying differences in patterns of host immunity. Despite continued gene flow along particular transmission routes, the overall extent of viral traffic was less than expected under panmixis. Hence, DENV in the Americas has a clear geographic structure that maintains viral diversity between outbreaks.  相似文献   

10.
A high titer of hemagglutinin (HAnin) was found in culture fluids of cells of Aedes albopictus, clone C6/36, infected with type 1 dengue virus. The HAnin (TC antigen) was associated with complete virions and no appreciable small-sized HAnin was produced, in contrast to the case in an infected suckling mouse brain (SMB) homogenate, in which most of the HAnin is smaller than complete virions. Extraction of the TC antigen with Tween 80-ether disrupted the HAnin into smaller-sized particles, resulting in complete loss of infectivity (TE-TC antigen), but it did not affect the titer or reactivity of the HAnin. Comparative hemagglutination-inhibition (HI) assay of human sera using TC antigen, TE-TC antigen or standard antigen extracted from infected SMB (SMB antigen) showed that TC or TE-TC antigen could be used for routine diagnostic or epidemiological HI tests instead of SMB antigen, which is rather hard to prepare.  相似文献   

11.
12.
The individual contributions of each of the six conserved disulfide (SS) bonds in the dengue 2 virus envelope (E) glycoprotein (strain 16681) to epitope expression was determined by measuring the reactivities of a panel of well-defined monoclonal antibodies (MAbs) with LLC-MK(2) cells that had been transiently transformed with plasmid vectors expressing E proteins that were mutant in their SS bonds. Three domain I (DI) epitopes (C1, C3, and C4) were affected by elimination of any SS bond and were essentially the only epitopes affected by elimination of the amino-proximal SS1 formed between Cys 3 and Cys 30. The remaining DI epitope (C2) was sensitive to only SS3-bond (Cys 74-Cys 105) and SS6-bond (Cys 302-Cys 333) elimination. Of the four DII epitopes examined, reactivities of three anti-epitope MAbs (A1, A2, and A5) were reduced by elimination of SS2 (Cys 61-Cys 121), SS3, SS4 (Cys 94-Cys 116), SS5 (Cys 185-Cys 285), or SS6. The other DII epitope examined (A3) was sensitive only to SS2- and SS3-bond elimination. The three DIII epitopes tested (B2, B3, and B4) were most sensitive to elimination of SS6. The flavivirus group epitope (A1) was less sensitive to elimination of SS3 and SS6. This result may indicate that the region proximal to the E-protein fusion motif (amino acids 98 to 110) may have important linear components. If this observation can be confirmed, peptide mimics from this region of E protein might be able to interfere with flavivirus replication.  相似文献   

13.
Dengue has been well recognized as a global public health threat,but only sporadic epidemics and imported cases were reported in recent decades in China.Since July 2014,an unexpected large dengue outbreak has occurred in Guangdong province,China,resulting in more than 40000 patients including six deaths.To clarify and characterize the causative agent of this outbreak,the acute phase serum from a patient diagnosed with severe dengue was subjected to virus isolation and high-throughput sequencing(HTS).Traditional real-time RT-PCR and HTS with Ion Torrent PGM detected the presence of dengue virus serotype 2(DENV-2).A clinical DENV-2 isolate GZ05/2014 was obtained by culturing the patient serum in mosquito C6/36 cells.The complete genome of GZ05/2014 was determined and deposited in Gen Bank under the access number KP012546.Phylogenetic analysis based on the complete envelope gene showed that the newly DENV-2 isolate belonged to Cosmopolitan genotype and clustered closely with other Guangdong strains isolated in the past decade.No amino acid mutations that are obviously known to increase virulence or replication were identified throughout the genome of GZ05/2014.The high homology of Guangdong DENV-2 strains indicated the possibility of establishment of local DENV-2 circulation in Guangdong,China.These results help clarify the origin of this epidemic and predict the future status of dengue in China.  相似文献   

14.
15.
A recombinant replication-defective adenovirus vector that can overexpress the ectodomain of the envelope protein of dengue virus type 2 (NGC strain) has been constructed. This virus was immunogenic in mice and elicited dengue virus type 2 specific B- and T-cell responses. Sera from immunized mice contained neutralizing antibodies that could specifically recognize dengue virus type 2 and neutralize its infectivity in vitro, indicating that this approach has the potential to confer protective immunity. In vitro stimulation of splenocytes (from immunized mice) with dengue virus type 2 resulted in a significant proliferative response accompanied by the production of high levels of gamma interferon but did not show significant changes in interleukin-4 levels. This is suggestive of a Th1-like response (considered to be important in the maturation of cytotoxic T lymphocytes that are essential for the elimination of virus-infected cells). The data show that adenovirus vectors offer a promising alternative strategy for the development of dengue virus vaccines.  相似文献   

16.
BackgroundLike many countries from the Americas, Cuba is threatened by Aedes aegypti-associated arboviruses such as dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV) viruses. Curiously, when CHIKV was actively circulating in the region in 2013–2014, no autochthonous transmission of this virus was detected in Havana, Cuba, despite the importation of chikungunya cases into this city. To investigate if the transmission ability of local mosquito populations could explain this epidemiological scenario, we evaluated for the first time the vector competence of two Ae. aegypti populations (Pasteur and Párraga) collected from Havana for dengue virus type 1 (DENV-1), CHIKV, and ZIKV.Methodology/Principal findingsMosquito populations were fed separately using blood containing ZIKV, DENV-1, or CHIKV. Infection, dissemination, and transmission rates, were estimated at 3 (exclusively for CHIKV), 7, and 14 days post exposure (dpe) for each Ae. aegypti population-virus combination. Both mosquito populations were susceptible to DENV-1 and ZIKV, with viral infection and dissemination rates ranging from 24–97% and 6–67% respectively. In addition, CHIKV disseminated in both populations and was subsequently transmitted. Transmission rates were low (<30%) regardless of the mosquito population/virus combination and no ZIKV was detected in saliva of females from the Pasteur population at any dpe.Conclusions/SignificanceOur study demonstrated the ability of Ae. aegypti from Cuba to transmit DENV, ZIKV, and CHIKV. These results, along with the widespread distribution and high abundance of this species in the urban settings throughout the island, highlight the importance of Ae. aegypti control and arbovirus surveillance to prevent future outbreaks.  相似文献   

17.
In Madagascar, Newcastle disease (ND) has become enzootic after the first documented epizootics in 1946, with recurrent annual outbreaks causing mortality up to 40%. Four ND viruses recently isolated in Madagascar were genotypically and pathotypically characterised. By phylogenetic inference based on the F and HN genes, and also full-genome sequence analyses, the NDV Malagasy isolates form a cluster distant enough to constitute a new genotype hereby proposed as genotype XI. This new genotype is presumably deriving from an ancestor close to genotype IV introduced in the island probably more than 50 years ago. Our data show also that all the previously described neutralising epitopes are conserved between Malagasy and vaccine strains. However, the potential implication in vaccination failures of specific amino acid substitutions predominantly found on surface-exposed epitopes of F and HN proteins is discussed.  相似文献   

18.
Zheng D  Chen G  Guo B  Cheng G  Tang H 《Cell research》2008,18(11):1105-1113
Infections by coronaviruses such as severe acute respiratory syndrome (SARS) coronavirus (SCoV) and mouse hepatitis virus A59 (MHV-A59) result in very little type I interferon (IFN) production by host cells, which is potentially responsible for the rapid viral growth and severe immunopathology associated with SARS. However, the molecular mechanisms for the low IFN production in cells infected with coronaviruses remain unclear. Here, we provide evidence that Papain-like protease domain 2 (PLP2), a catalytic domain of the nonstructural protein 3 (nsp3) of MHV-A59, can bind to IRF3, cause its deubiquitination and prevent its nuclear translocation. As a consequence, co-expression of PLP2 strongly inhibits CARDIF-, TBK1- and IRF3-mediated IFNbeta reporter activities. In addition, we show that wild-type PLP2 but not the mutant PLP2 lacking the deubiquitinase (DUB) activity can reduce IFN induction and promote viral growth in cells infected with VSV. Thus, our study uncovered a viral DUB which coronaviruses may use to escape from the host innate antiviral responses.  相似文献   

19.
The development of effective hepatitis C virus (HCV) vaccines is essential for the prevention of further HCV dissemination, especially in developing countries. Therefore the aim of this study is to establish a feasible and immunocompetent surrogate animal model of HCV infection that will help in evaluation of the protective efficacy of newly developing HCV vaccine candidates. To circumvent the narrow host range of HCV, an HCV genotype 1b‐based chimeric clone carrying E1, E2 and p6 regions from GB virus B (GBV‐B), which is closely related to HCV, was generated. The chimera between HCV and GBV‐B, named HCV/G, replicated more efficiently as compared with the HCV clone in primary marmoset hepatocytes. Furthermore, it was found that the chimera persistently replicated in a tamarin for more than 2 years after intrahepatic inoculation of the chimeric RNA. Although relatively low (<200 copies/mL), the viral RNA loads in plasma were detectable intermittently during the observation period. Of note, the chimeric RNA was found in the pellet fraction obtained by ultracentrifugation of the plasma at 73 weeks, indicating production of the chimeric virus. Our results will help establish a novel non‐human primate model for HCV infection on the basis of the HCV/G chimera in the major framework of the HCV genome.  相似文献   

20.
Dengue viruses have spread throughout tropical and subtropical countries, and vaccine development is urgently needed. However, one concern is that induction of insufficient levels of neutralizing antibodies in vaccines may increase disease severity because of a hypothetical mechanism termed antibody-dependent enhancement of infection. This study used two distinct genotype strains of dengue virus types 1 and 3 (DENV1 and DENV3, respectively) to compare antibody responses in a mouse-DNA vaccine model. As expected, a conventional neutralization test using Vero cells showed higher antibody titers in homologous rather than heterologous combinations of genotype strains used for mouse immunization and the neutralization test, for each of DENV1 and DENV3. However, our assay system using K562 cells to measure the balance of neutralizing and enhancing antibodies indicated that Vero cell-neutralizing antibody titers did not always correlate with enhancing activities observed at subneutralizing doses. Rather, induction of enhancing activities depended on the genotype strain used for mouse immunization. The genotype/strain difference also affected IgG subclass profiles and potentially the composition of antibody species induced in mice. This study suggests that enhancing activities of dengue virus-induced neutralizing antibodies may vary according to the genotype and has implications for vaccine antigen development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号