首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Using a directional cloning strategy, DNA sequence information was obtained corresponding to the site of early radiation-induced apoptotic DNA fragmentation within the human lymphoblastoid cell line TK6. Data were obtained from 88 distinct clones comprising approximately 65 kbp of sequenced material. Analysis of all cloned material showed that sequences in the 10 bp immediately adjacent to the cleavage sites were enriched in short oligoT tracts. The proportion of repetitive DNA within the entire cloned material was found to be within the normal range. However the distribution of Alu and LINE repetitive DNA were biased to positions at or adjacent to the apoptotic cleavage site. In particular, a non-random distribution of five cleavage sites was found clustered within the second ORF of the LINE L1 that partially overlapped with two binding sites for the nuclear matrix-associated protein SATB1. Three other clones, containing alpha satellite elements, were also linked to a DNA matrix binding function. These data indicate that the site of chromatin loop formation at the nuclear matrix may be a specific target for early DNA fragmentation events during apoptosis.  相似文献   

2.
Apoptotic DNA fragmentation induced by gamma-rays has been compared with the DNA loop sizes in G0-human lymphocytes using pulsed field gel electrophoresis (PFGE). Genomic DNA was cleaved into the DNA loops at the topoisomerase II mediated attachment points using short treatment of cells with etoposide. The apoptotic fragmentation, with a distinct cut-off around 50 kb for a maximum length of fragments, appeared 5 h after irradiation when the most part of radiation-induced DNA double strand breaks (DSBs) have been repaired. The data indicate that apoptotic fragmentation of DNA in the G0-human lymphocytes begins when repair of radiation-induced DSBs has been completed. Similar apoptotic DNA fragmentation was also observed following the treatment of cells with etoposide. All genomic DNA was fragmented into 50-kb fragments during the final stages of apoptosis. Most of the DNA in resting lymphocytes is organized into Mb-size loops but loops of sizes down to 50 kb were also observed. A sharp border between the size distributions of DNA loops and apoptotic fragments was found. The data suggest that 50 kb apoptotic fragmentation is not based on excision of the DNA loops. No apoptotic fragments with the sizes more than 5.7 Mb were seen during the whole course of apoptosis. This observation indicates that despite intensive apoptotic fragmentation into the 50-kb fragments the chromosomes maintain integrity during radiation-induced apoptosis in human lymphocytes. We propose a model for radiation-induced apoptotic fragmentation in human lymphocytes that involves four stages: induction of DNA breaks and relaxation of DNA loops; DNA repair followed by reorganization of the DNA loops into the 50-kb units of condensed chromatin; co-operative fragmentation of the reorganized DNA loops into the distinct 50-kb fragments and resealing of the chromosome ends at the sites of this fragmentation; cleavage of the 50-kb fragments at the internucleosomal spacers.  相似文献   

3.
Disintegration of nuclear DNA into high molecular weight (HMW) and oligonucleosomal DNA fragments represents two major periodicities of DNA fragmentation during apoptosis. These are thought to originate from the excision of DNA loop domains and from the cleavage of nuclear DNA at the internucleosomal positions, respectively. In this report, we demonstrate that different apoptotic insults induced apoptosis in NB-2a neuroblastoma cells that was invariably accompanied by the formation of HMW DNA fragments of about 50-100 kb but proceeded either with or without oligonucleosomal DNA cleavage, depending on the type of apoptotic inducer. We demonstrate that differences in the pattern of DNA fragmentation were reproducible in a cell-free apoptotic system and develop conditions that allow in vitro separation of the HMW and oligonucleosomal DNA fragmentation activities. In contrast to apoptosis associated with oligonucleosomal DNA fragmentation, the HMW DNA cleavage in apoptotic cells was accompanied by down-regulation of caspase-activated DNase (CAD) and was not affected by z-VAD-fmk, suggesting that the caspase/CAD pathway is not involved in the excision of DNA loop domains. We further demonstrate that nonapoptotic NB-2a cells contain a constitutively present nuclease activity located in the nuclear matrix fraction that possessed the properties of topoisomerase (topo) II and was capable of reproducing the pattern of HMW DNA cleavage that occurred in apoptotic cells. We demonstrate that the early stages of apoptosis induced by different stimuli were accompanied by activation of topo II-mediated HMW DNA cleavage that was reversible after removal of apoptotic inducers, and we present evidence of the involvement of topo II in the formation of HMW DNA fragments at the advanced stages of apoptosis. The results suggest that topo II is involved in caspase-independent excision of DNA loop domains during apoptosis, and this represents an alternative pathway of apoptotic DNA disintegration from CAD-driven caspase-dependent oligonucleosomal DNA cleavage.  相似文献   

4.
ABSTRACT: BACKGROUND: The digallic acid (DGA) purified from Pistacia lentiscus. L fruits was investigated for its antiproliferative and apoptotic activities on human lymphoblastoid TK6 cells. METHODS: We attempt to characterize the apoptotic pathway activated by DGA. Apoptosis was detected by DNA fragmentation, PARP cleavage and by evaluating caspase activities. RESULTS: The inhibition of lymphoblastoid cell proliferation was noted from 8.5 mug/ml of DGA. The induction of apoptosis was confirmed by DNA fragmentation and PARP cleavage. We have demonstrated that DGA induces apoptosis by activating the caspase-8 extrinsic pathway. Caspase-3 was also activated in a dose dependent manner. CONCLUSION: In summary, DGA exhibited an apoptosis inductor effect in TK6 cells revealing thus its potential as a cancer-preventive agent.  相似文献   

5.
IL-2 deprivation induces apoptosis in human IL-2-dependent T-cell clones. This process is characterized by typical cell morphology, changes in the cellular membranes and fragmentation of chromatin into units of single and multiple nucleosomes. We isolated apoptotic DNA of an IL-2-deprived T-cell clone and sequenced randomly selected fragments representing single and multiple nucleosomes.The frequency of phased adenosine tracts was markedly increased in the small apoptotic fragments as compared to oligonucleosomes. Our results thus indicate that chromatin fragmentation in human apoptotic T-cells is not random but preferentially involves DNA sequences with the capability to form bent DNA. Whether this indicates a colocalization of DNase cleavage sites and phased adenosine tracts on the chromosomes or a bias in selecting sites for apoptotic DNA fragmentation is discussed. Analysing the underlying mechanisms will shed new light on DNA degradation in apoptosis.  相似文献   

6.
It has been shown previously that apoptosis of tobacco cells induced by cadmium ions shows a relatively long lag period between exposure and cell death. This lag phase lasts for 3 d in TBY-2 cell cultures and is characterized by the maintenance of full cell viability despite extensive fragmentation of DNA into pieces of chromatin loop size. Experiments reported here demonstrate that cell death can be prevented if 50 micro M CdSO(4) is removed from the growth medium during the lag phase, suggesting that an irreversible apoptotic trigger is delivered within 24 h, between the third and fourth days of cadmium treatment. The post-cadmium recovery phase was characterized by DNA repair at the level of 50-200 kb and increased telomerase activity. Analysis of high-molecular-weight DNA by pulsed-field-gel electrophoresis revealed that the majority of DNA strand breaks was repaired within 48 h after cadmium withdrawal. Telomerase activity increased 2.5-fold in the recovery phase, but elevated levels were also found in cell extracts from apoptotic cells suggesting that telomerase might be associated with DNA repair, but it is not capable of inhibiting ongoing apoptosis. Limited exposure of TBY-2 cells to cadmium elicits non-random DNA damage of relatively high magnitude that can be repaired. It is proposed that plants might have developed a highly efficient DNA repair system to cope with transient genotoxic stress.  相似文献   

7.
Discrete cleavages within 28S rRNA divergent domains have previously been found to coincide with DNA fragmentation during apoptosis. Here we show that rRNA and DNA cleavages can occur independently in apoptotic cells, i.e. that the previously observed correlation is likely to be coincidental. In HL-60 cells, apoptosis with massive DNA fragmentation could be induced without any signs of rRNA cleavage. The opposite situation; rRNA cleavage without concomitant internucleosomal DNA fragmentation, was found in okadaic acid-treated Molt-4 cells. Other leukemia cell lines underwent apoptosis either without (K562 and Molt-3) or with (U937) both forms of polynucleotide cleavage. In K562 cells transfected with a temperature-sensitive p53 mutant, internucleosomal DNA fragmentation but not 28S rRNA cleavage was inducible by wild-type p53 expression. The absence of apoptotic rRNA cleavage in some cell types suggests that this phenomenon is tightly regulated and unrelated to DNA fragmentation or a presumed scheme for general macromolecular degradation in apoptotic cells.  相似文献   

8.
9.
The emergence of therapy-related acute myeloid leukemia (t-AML) has been associated with DNA topoisomerase II (TOP2)-targeted drug treatments and chromosomal translocations frequently involving the MLL, or ALL-1, gene. Two distinct mechanisms have been implicated as potential triggers of t-AML translocations: TOP2-mediated DNA cleavage and apoptotic higher-order chromatin fragmentation. Assessment of the role of TOP2 in this process has been hampered by a lack of techniques allowing in vivo mapping of TOP2-mediated DNA cleavage at nucleotide resolution in single-copy genes. A novel method, extension ligation-mediated polymerase chain reaction (ELMPCR), was used here for mapping topoisomerase-mediated DNA strand breaks and apoptotic DNA cleavage across a translocation-prone region of MLL in human cells. We report the first genomic map integrating translocation breakpoints and topoisomerase I, TOP2, and apoptotic DNA cleavage sites at nucleotide resolution across an MLL region harboring a t-AML translocation hotspot. This hotspot is flanked by a TOP2 cleavage site and is localized at one extremity of a minor apoptotic cleavage region, where multiple single- and double-strand breaks were induced by caspase-activated apoptotic nucleases. This cleavage pattern was in sharp contrast to that observed approximately 200 bp downstream in the exon 12 region, which displayed much stronger apoptotic cleavage but where no double-strand breaks were detected and no t-AML-associated breakpoints were reported. The localization and remarkable clustering of the t-AML breakpoints cannot be explained simply by the DNA cleavage patterns but might result from potential interactions between TOP2 poisoning, apoptotic DNA cleavage, and DNA repair attempts at specific sites of higher-order chromatin structure in apoptosis-evading cells. ELMPCR provides a new tool for investigating the role of DNA topoisomerases in fundamental genetic processes and translocations associated with cancer treatments involving topoisomerase-targeted drugs.  相似文献   

10.
Excision of chromatin loop domains and internucleosomal DNA fragmentation are widely considered as consecutive stages of chromatin disassembly during apoptosis. We report here on apoptosis induced by staurosporine in NB-2a neuroblastoma cells, which was accompanied by excision of chromatin loop domains, but proceeded without internucleosomal DNA cleavage. In contrast to apoptosis associated with internucleosomal DNA fragmentation, the apoptotic pathway associated with excision of chromatin loop domains was largely caspase independent. We identify here MAPK family member, p38/JNK, mitochondria, and topoisomerase II as the components of this caspase-independent apoptotic pathway. While caspase-independent excision of chromatin loop domains was a predominant mechanism of DNA disintegration in staurosporine-treated neuroblastoma, both caspase-dependent internucleosomal DNA fragmentation and caspase-independent excision of chromatin loop domains accompanied staurosporine-induced apoptosis of promyelocytic leukemia cells. Our results suggest that caspase-independent excision of chromatin loop domains represents a separate cell death pathway, which operates either in parallel or independently from caspase-dependent internucleosomal DNA fragmentation.  相似文献   

11.
The phosphorylation of histone H2AX at serine 139 is one of the earliest responses of mammalian cells to ionizing radiation-induced DNA breaks. DNA breaks are also generated during the terminal stages of apoptosis when chromosomal DNA is cleaved into oligonucleosomal pieces. Apoptotic DNA fragmentation and the consequent chromatin condensation are important for efficient clearing of genomic DNA and nucleosomes and for protecting the organism from auto-immmunization and oncogenic transformation. In this study, we demonstrate that H2AX is phosphorylated during apoptotic DNA fragmentation in mouse, Chinese hamster ovary, and human cells. We have previously shown that ataxia telangiectasia mutated kinase (ATM) is primarily responsible for H2AX phosphorylation in murine cells in response to ionizing radiation. Interestingly, we find here that DNA-dependent protein kinase (DNA-PK) is solely responsible for H2AX phosphorylation during apoptosis while ATM is dispensable for the process. Moreover, the kinase activity of DNA-PKcs (catalytic subunit of DNA-PK) is specifically required for the induction of gammaH2AX. We further show that DNA-PKcs is robustly activated in apoptotic cells, as evidenced by autophosphorylation at serine 2056, before it is inactivated by cleavage. In contrast, ATM is degraded well before DNA fragmentation and gammaH2AX induction resulting in the predominance of DNA-PK during the later stages of apoptosis. Finally, we show that DNA-PKcs autophosphorylation and gammaH2AX induction occur only in apoptotic nuclei with characteristic chromatin condensation but not in non-apoptotic nuclei from the same culture establishing the most direct link between DNA fragmentation, DNA-PKcs activation, and H2AX phosphorylation. It is well established that DNA-PK is inactivated by cleavage late in apoptosis in order to forestall DNA repair. Our results demonstrate, for the first time, that DNA-PK is actually activated in late apoptotic cells and is able to initiate an early step in the DNA-damage response, namely H2AX phosphorylation, before it is inactivated by proteolysis.  相似文献   

12.
13.
Chromatin condensation and oligonucleosomal DNA fragmentation are the nuclear hallmarks of apoptosis. A proteolytic fragment of the apoptotic chromatin condensation inducer in the nucleus (Acinus), which is generated by caspase cleavage, has been implicated in mediating apoptotic chromatin condensation prior to DNA fragmentation. Acinus is also involved in mRNA splicing and a component of the apoptosis and splicing-associated protein (ASAP) complex. To study the role of Acinus for apoptotic nuclear alterations, we generated stable cell lines in which Acinus isoforms were knocked down by inducible and reversible RNA interference. We show that Acinus is not required for nuclear localization and interaction of the other ASAP subunits SAP18 and RNPS1; however, knockdown of Acinus leads to a reduction in cell growth. Most strikingly, down-regulation of Acinus did not inhibit apoptotic chromatin condensation either in intact cells or in a cell-free system. In contrast, although apoptosis proceeds rapidly, analysis of nuclear DNA from apoptotic Acinus knockdown cells shows inhibition of oligonucleosomal DNA fragmentation. Our results therefore suggest that Acinus is not involved in DNA condensation but rather point to a contribution of Acinus in internucleosomal DNA cleavage during programmed cell death.  相似文献   

14.
We previously isolated a 34-kDa nuclease (AN34) from apoptotic human leukemia cells. Here, we identify AN34 as an N-terminally truncated form of human AP endonuclease (Ape1) lacking residues 1-35 (delta35-Ape1). Although Ape1 has hitherto been considered specific for damaged DNA (specific to AP site), recombinant AN34 (delta35-Ape1) possesses significant endonuclease activity on undamaged (normal) DNA and in chromatin. AN34 also displays enhanced 3'-5' exonuclease activity. Caspase-3 activates AN34 in a cell-free system, although caspase-3 cannot cleave Ape1 directly in vitro. We also found that Ape1 itself preferentially cleaves damaged chromatin DNA isolated from cells treated with apoptotic stimuli and that silencing of Ape1 expression decreases apoptotic DNA fragmentation in DFF40/CAD-deficient cells. Thus, we propose that AN34 and Ape1 participate in the process of chromatin fragmentation during apoptosis.  相似文献   

15.
Ascertaining the time-dependent regulation of induced apoptosis and radioresistance is important to understand the relationship between the level of spontaneous apoptosis in cells and their radiosensitivity. Accordingly, we investigated the time-dependent expression of apoptosis related genes and radioresistance in neuroblastoma cells. Serum-starved human SK-N-MC cells were exposed to low linear energy transfer (LET) radiation (2 Gy) and incubated for 15, 30, 45 min, and 48 h. Radioresistance was investigated by examining the NFκB DNA-binding activity, cellular toxicity, DNA fragmentation, and expression of apoptotic signal transduction molecules. NFκB DNA binding activity was analyzed using electrophoretic mobility shift assay (EMSA). Cellular toxicity was measured using MTT assay. DNA fragmentation was quantified by labeling with fluorescein-conjugated deoxynucleotides. Microarray analysis was performed using cDNA microarray and relative gene expression was measured as % GAPDH and, subsequently validated using Q-PCR. Induction of NFκB analyzed using EMSA showed an increased DNA-binding activity at all time points investigated. Induced DNA fragmentation was observed after 15, 30, and 45 min post-radiation. Relatively, induced fragmentation was reduced after 48 h. Compared to the untreated controls cellular toxicity was induced with low LET radiation after 15, 30, and 45 min. Conversely, cytotoxicity was relatively less at 48 h after low LET radiation. Microarray analysis after low LET radiation revealed time-dependent modulation of apoptosis-related genes that are involved in radio-adaptation, spontaneous apoptosis-related early-responsive genes and late response genes. These results suggest that the time-dependent regulation of apoptotic response may determine the relationship between the level of spontaneous apoptosis in cells and their radiosensitivity.  相似文献   

16.
17.
18.
Brefeldin A (BFA) is a natural product that affects the structure and function of the Golgi apparatus and is in development for cancer chemotherapy. We observed that a wide range of cancer cells could undergo DNA fragmentation associated with apoptosis after BFA treatment. This DNA fragmentation was induced within 15 h in HL60 leukemia cells and after 48 h in K562 leukemia and HT-29 colon carcinoma cells with BFA concentrations as low as 0.1 μM.The DNA fragmentation had the typical internucleosomal pattern in HL60 and HT-29 cells. Apoptotic cells were also detected by microscopy. BFA-induced apoptosis is p53-independent as HL60 and K562 cells are p53 null and HT-29 are p53 mutant cells. BFA could potentiate UCN-01 and staurosporine-induced DNA fragmentation in HL60 cells. Cyclin B1/Cdc2 kinase activity decreased after BFA treatment in HL60 cells, indicating that BFA-induced DNA fragmentation was independent of a cyclin B1/Cdc2 kinase upregulation pathway. Cycloheximide could not prevent BFA-induced DNA fragmentation in HL60 cells, suggesting that protein synthesis is not needed for HL60 cells to undergo apoptosis. On the contrary, cycloheximide blocked BFA-induced DNA fragmentation in HT-29 cells, indicating that apoptosis in HT-29 cells requires macromolecular synthesis. Cell-free system experiments suggested that cytosolic proteins play an important role in triggering DNA fragmentation during apoptosis induced by BFA. Our results show that transduction signaling pathways play central roles in apoptotic regulation.  相似文献   

19.
The DNA fragmentation factor 45 (DFF45) is a subunit of a heterodimeric DNase complex critical for the induction of DNA fragmentation in vitro. To understand the in vivo role of DFF45 in programmed cell death, we measured the expression of DFF45 during mouse development and compared DNA fragmentation and viability of DFF45-deficient cells with wild-type control cells after activation of apoptosis. We found that DFF45 is ubiquitously expressed throughout mouse development. Moreover, DFF45-deficient thymocytes are resistant to DNA fragmentation with in vivo dexamethasone treatment. Furthermore, primary thymocytes from DFF45 mutant mice are also more resistant to apoptosis than wild-type control cells on exposure to several apoptotic stimuli. Dying DFF45-deficient thymocytes exhibit different morphology than wild-type control cells in that they show reduced degree of chromatin condensation, absent nuclear fragmentation, intranuclear cytoplasmic invagination, and striking nuclear chromatin conglutination after release from disintegrating cells. These results indicate that DFF45 is essential during normal apoptosis.  相似文献   

20.
We studied the role of proteases in apoptosis using a cell-free system prepared from a human leukemia cell line. HL60 cells are p53 null and extremely sensitive to a variety of apoptotic stimuli including DNA damage induced by the topoisomerase I inhibitor, camptothecin. We measured DNA fragmentation induced in isolated nuclei by cytosolic extracts using a filter elution assay. Cytosol from camptothecin-treated HL60 cells induced internucleosomal DNA fragmentation in nuclei from untreated cells. This fragmentation was suppressed by serine protease inhibitors. Serine proteases (trypsin, endoproteinase Glu-C, chymotrypsin A, and proteinase K) and papain by themselves induced DNA fragmentation in naive nuclei. This effect was enhanced in the presence of cytosol from untreated cells. Cysteine protease inhibitors (E-64, leupeptin, Ac-YVAD-CHO [ICE inhibitor]) did not affect camptothecin-induced DNA fragmentation. The apopain/Yama inhibitor, Ac-DEVD-CHO, and the proteasome inhibitor, MG-132, were also inactive both in the cell-free system and in whole cells. Interleukin-1β converting enzyme (ICE) or human immunodeficiency virus protease failed to induce DNA fragmentation in naive nuclei. Together, these results suggest that DNA damage activates serine protease(s) which in turn activate(s) nuclear endonuclease(s) during apoptosis in HL60 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号