首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Auxin transport in maize roots in response to localized nitrate supply   总被引:2,自引:0,他引:2  
Liu J  An X  Cheng L  Chen F  Bao J  Yuan L  Zhang F  Mi G 《Annals of botany》2010,106(6):1019-1026

Background and Aims

Roots typically respond to localized nitrate by enhancing lateral-root growth. Polar auxin transport has important roles in lateral-root formation and growth; however, it is a matter of debate whether or how auxin plays a role in the localized response of lateral roots to nitrate.

Methods

Treating maize (Zea mays) in a split-root system, auxin levels were quantified directly and polar transport was assayed by the movement of [3H]IAA. The effects of exogenous auxin and polar auxin transport inhibitors were also examined.

Key Results

Auxin levels in roots decreased more in the nitrate-fed compartment than in the nitrate-free compartment and nitrate treatment appeared to inhibit shoot-to-root auxin transport. However, exogenous application of IAA only partially reduced the stimulatory effect of localized nitrate, and auxin level in the roots was similarly reduced by local applications of ammonium that did not stimulate lateral-root growth.

Conclusions

It is concluded that local applications of nitrate reduced shoot-to-root auxin transport and decreased auxin concentration in roots to a level more suitable for lateral-root growth. However, alteration of root auxin level alone is not sufficient to stimulate lateral-root growth.  相似文献   

4.
Requejo R  Tena M 《Phytochemistry》2005,66(13):1519-1528
To gain insight into plant responses to arsenic, the effect of arsenic exposure on maize (Zea mays L.) root proteome has been examined. Maize seedlings were fed hydroponically with 300 microM sodium arsenate or 250 microM sodium arsenite for 24 h, and changes in differentially displayed proteins were studied by two-dimensional electrophoresis and digital image analysis. About 10% of total detected maize root proteins (67 out of 700) were up- or down-regulated by arsenic, among which 20 were selected as being quite reproducibly affected by the metalloid. These were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and 11 of them could be identified by comparing their peptide mass fingerprints against protein- and expressed sequence tag-databases. The set of identified maize root proteins highly responsive to arsenic exposure included a major and functionally homogeneous group of seven enzymes involved in cellular homeostasis for redox perturbation (e.g., three superoxide dismutases, two glutathione peroxidases, one peroxiredoxin, and one p-benzoquinone reductase) besides four additional, functionally heterogeneous, proteins (e.g., ATP synthase, succinyl-CoA synthetase, cytochrome P450 and guanine nucleotide-binding protein beta subunit). These findings strongly suggest that the induction of oxidative stress is a main process underlying arsenic toxicity in plants.  相似文献   

5.
6.
Signal-dependent alternative splicing is important for regulating gene expression in eukaryotes, yet our understanding of how signals impact splicing mechanisms is limited. A model to address this issue is alternative splicing of Drosophila TAF1 pre-mRNA in response to camptothecin (CPT)-induced DNA damage signals. CPT treatment of Drosophila S2 cells causes increased inclusion of TAF1 alternative cassette exons 12a and 13a through an ATR signaling pathway. To evaluate the role of TAF1 pre-mRNA sequences in the alternative splicing mechanism, we developed a TAF1 minigene (miniTAF1) and an S2 cell splicing assay that recapitulated key aspects of CPT-induced alternative splicing of endogenous TAF1. Analysis of miniTAF1 indicated that splice site strength underlies independent and distinct mechanisms that control exon 12a and 13a inclusion. Mutation of the exon 13a weak 5' splice site or weak 3' splice site to a consensus sequence was sufficient for constitutive exon 13a inclusion. In contrast, mutation of the exon 12a strong 5' splice site or moderate 3' splice site to a consensus sequence was only sufficient for constitutive exon 12a inclusion in the presence of CPT-induced signals. Analogous studies of the exon 13 3' splice site suggest that exon 12a inclusion involves signal-dependent pairing between constitutive and alternative splice sites. Finally, intronic elements identified by evolutionary conservation were necessary for full repression of exon 12a inclusion or full activation of exon 13a inclusion and may be targets of CPT-induced signals. In summary, this work defines the role of sequence elements in the regulation of TAF1 alternative splicing in response to a DNA damage signal.  相似文献   

7.

Background

Alternative splicing (AS) of precursor mRNA (pre-mRNA) is an important gene regulation process that potentially regulates many physiological processes in plants, including the response to abiotic stresses such as salt stress.

Results

To analyze global changes in AS under salt stress, we obtained high-coverage (~200 times) RNA sequencing data from Arabidopsis thaliana seedlings that were treated with different concentrations of NaCl. We detected that ~49% of all intron-containing genes were alternatively spliced under salt stress, 10% of which experienced significant differential alternative splicing (DAS). Furthermore, AS increased significantly under salt stress compared with under unstressed conditions. We demonstrated that most DAS genes were not differentially regulated by salt stress, suggesting that AS may represent an independent layer of gene regulation in response to stress. Our analysis of functional categories suggested that DAS genes were associated with specific functional pathways, such as the pathways for the responses to stresses and RNA splicing. We revealed that serine/arginine-rich (SR) splicing factors were frequently and specifically regulated in AS under salt stresses, suggesting a complex loop in AS regulation for stress adaptation. We also showed that alternative splicing site selection (SS) occurred most frequently at 4 nucleotides upstream or downstream of the dominant sites and that exon skipping tended to link with alternative SS.

Conclusions

Our study provided a comprehensive view of AS under salt stress and revealed novel insights into the potential roles of AS in plant response to salt stress.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-431) contains supplementary material, which is available to authorized users.  相似文献   

8.
In order to examine the possible involvement of the 20S proteasome in degradation of oxidized proteins, the effects of different cadmium concentrations on its activities, protein abundance and oxidation level were studied using maize (Zea mays L.) leaf segments. The accumulation of carbonylated and ubiquitinated proteins was also investigated. Treatment with 50 microM CdCl(2) increased both trypsin- and PGPH-like activities of the 20S proteasome. The incremental changes in 20S proteasome activities were probably caused by an increased level of 20S proteasome oxidation, with this being responsible for degradation of the oxidized proteins. When leaf segments were treated with 100 microM CdCl(2), the chymotrysin- and trypsin-like activities of the 20S proteasome also decreased, with a concomitant increase in accumulation of carbonylated and ubiquitinated proteins. With both Cd(2+) concentrations, the abundance of the 20S proteasome protein remained similar to the control experiments. These results provide evidence for the involvement of this proteolytic system in cadmium-stressed plants.  相似文献   

9.
The human CD44 gene encodes multiple isoforms of a transmembrane protein that differ in their extracellular domains as a result of alternative splicing of its variable exons. Expression of CD44 is tightly regulated according to the type and physiological status of a cell, with expression of high molecular weight isoforms by inclusion of variable exons and low molecular weight isoforms containing few or no variable exons. Human CD44 variable exon 3 (v3) can follow a specific alternative splicing route different from that affecting other variable exons. Here we map and functionally describe the splicing enhancer element within CD44 exon v3 which regulates its inclusion in the final mRNA. The v3 splicing enhancer is a multisite bipartite element consisting of a tandem nonamer, the XX motif, and an heptamer, the Y motif, located centrally in the exon. Each of the three sites of this multisite enhancer partially retains its splicing enhancing capacity independently from each other in CD44 and shows full enhancing function in gene contexts different from CD44. We further demonstrate that these motifs act cooperatively as at least two motifs are needed to maintain exon inclusion. Their action is differential with respect to the splice-site target abutting v3. The first X motif acts on the 3' splice site, the second X motif acts on both splice sites (as a bidirectional exonic splicing enhancer), and the Y motif acts on the 5' splice site. We also show that the multisite v3 splicing enhancer is functional irrespective of flanking intron length and spatial organization within v3.  相似文献   

10.
11.
Kim YS  Kim TW  Kim SK 《Phytochemistry》2005,66(9):1000-1006
GC-MS analysis revealed that primary roots of maize contain 6-deoxocathasterone, 6-deoxoteasterone and 6-deoxotyphasterol. These brassinosteroids, and the previously identified campesterol, campestanol, 6-deoxocastasterone and castasterone, in the roots are members of a biosynthetic pathway to castasterone, namely the late C-6 oxidation pathway, suggesting that its biosynthetic pathway is operative in the roots. To verify this, a cell-free enzyme extract was prepared from maize roots, and enzymatic conversions from campesterol to castasterone through the aforementioned sterols and brassinosteroids were examined. The presence for the biosynthetic sequences, campesterol-->24-methylcholest-4-en-3beta-ol-->24-methylcholest-4-en-3-one-->24-methylcholest-5 alpha-cholestan-3-one-->campestanol and 6-deoxoteasterone-->6-deoxo-3-dehydroteasterone-->6-deoxotyphasterol-->6-deoxocastasterone-->castasterone were demonstrated. These results indicate that maize roots contain a complete set of enzymes involved in the late C-6 oxidation pathway, thereby demonstrating that endogenous brassinosteroids are biosynthesized in the roots.  相似文献   

12.
13.
14.
15.
Su Z  Gu X 《Gene》2012,504(1):102-106
Gene duplications and alternative splicing (AS) isoforms are two widespread types of genetic variations that can facilitate diversification of protein function. A number of studies claimed that after gene duplication, two AS isoforms with differential functions can be 'fixed', respectively, in each of the duplicate copies. This simple 'functional-sharing' hypothesis was recently challenged by Roux and Robinson-Rechavi (2011). Instead, they proposed a more sophisticated hypothesis, invoking that less alternative splicing genes tend to be duplicated more frequently, and single-copy genes are younger than duplicate genes, or the 'duplicability-age' hypothesis for short. In this letter, we show that all these genome-wide analyses of AS isoforms actually did not provide clear-cut evidence to nullify the basic idea of functional-sharing hypothesis. After updating our understanding of genome-wide alternative splicing, duplicability and CNV (copy number variation), we argue that the foundation of the duplicability-age hypothesis remains to be justified carefully. Finally, we suggest that a better approach to resolving this controversy is the correspondence analysis of indels (insertions and deletions) between duplicate genes to the genomic exon-intron structure, which can be used to experimentally test the effect of functional-sharing hypothesis.  相似文献   

16.
Three O-methyltransferases (BX10a, b, c) catalyze the conversion of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc) to 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) in maize (Zea mays). Variation in benzoxazinoid accumulation and resistance to Rhopalosiphum maidis (corn leaf aphid) was attributed to a natural CACTA family transposon insertion that inactivates Bx10c. Whereas maize inbred line B73 has this transposon insertion, line CML277 does not. To characterize the phenotypic effects of DIMBOA-Glc methyltransferase activity, we created near-isogenic lines derived from B73 and CML277 that do or do not contain the transposon insertion. Bx10c inactivation causes high DIMBOA-Glc, low HDMBOA-Glc, and decreased aphid reproduction relative to near-isogenic lines that have a functional Bx10c gene. These results confirm the importance of this locus in maize aphid resistance. The availability of Bx10c near-isogenic lines will facilitate further research on the function of different benzoxazinoids and DIMBOA-Glc methyltransferase activity in maize defense against herbivores and pathogens.  相似文献   

17.
Splicing of vertebrate introns involves recognition of three consensus elements at the 3′ end. The branch point (BP) and polypyrimidine tract (PPT) are usually located within 40 nucleotides (nt) of the 3′ splice site (3′ ss), AG, but can be much more distant. A characteristic of the region between distant BPs (dBPs) and the 3′ ss is the absence of intervening AG dinucleotides, leading to its designation as the “AG exclusion zone” (AGEZ). The human HTR4 gene, which encodes serotonin receptor 4 and has been associated with schizophrenia, bipolar disease, and gastrointestinal disorders, has four exons with extensive AGEZs. We have mapped the BPs for HTR4 exons 3, 4, 5, and g generated by in vitro splicing, and validated them by mutagenesis in exon-trapping vectors. All exons used dBPs up to 273 nt upstream of the exon. Strikingly, exons 4 and 5 used combinations of both distant and conventionally located BPs, suggesting that successful splicing of these exons can occur by distinct pathways. Our results emphasize the importance for single nucleotide polymorphism resequencing projects to take account of potential dBPs, as the extended AGEZs are vulnerable to mutations that could affect splicing itself or regulation of alternative splicing.  相似文献   

18.
Myelin-associated glycoprotein (MAG) is a major component of myelin in the vertebrate central nervous system. MAG is present in the periaxonal region of the myelin structure, where it interacts with neuronal proteins to inhibit axon outgrowth and protect neurons from degeneration. Two alternatively spliced isoforms of Mag mRNA have been identified. The mRNA encoding the shorter isoform, known as S-MAG, contains a termination codon in exon 12, while the mRNA encoding the longer isoform, known as L-MAG, skips exon 12 and produces a protein with a longer C-terminal region. L-MAG is required in the central nervous system. How inclusion of Mag exon 12 is regulated is not clear. In a previous study, we showed that heteronuclear ribonucleoprotein A1 (hnRNP A1) contributes to Mag exon 12 skipping. Here, we show that hnRNP A1 interacts with an element that overlaps the 5′ splice site of Mag exon 12. The element has a reduced ability to interact with the U1 snRNP compared with a mutant that improves the splice site consensus. An evolutionarily conserved secondary structure is present surrounding the element. The structure modulates interaction with both hnRNP A1 and U1. Analysis of splice isoforms produced from a series of reporter constructs demonstrates that the hnRNP A1-binding site and the secondary structure both contribute to exclusion of Mag exon 12.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号