首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies have demonstrated that traumatic brain injury (TBI) increases hippocampal neurogenesis in the rodent brain. However, the mechanisms underlying increased neurogenesis after TBI remain unknown. Continuous neurogenesis occurs in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) in the adult brain. The mechanism that maintains active neurogenesis in the hippocampal area is not known. A high level of vesicular zinc is localized in the presynaptic terminals of the SGZ (mossy fiber). The mossy fiber of dentate granular cells contains high levels of chelatable zinc in their terminal vesicles, which can be released into the extracellular space during neuronal activity. Previously, our lab presented findings indicating that a possible correlation may exist between synaptic zinc localization and high rates of neurogenesis in this area after hypoglycemia or epilepsy. Using a weight drop animal model to mimic human TBI, we tested our hypothesis that zinc plays a key role in modulating hippocampal neurogenesis after TBI. Thus, we injected a zinc chelator, clioquinol (CQ, 30 mg/kg), into the intraperitoneal space to reduce brain zinc availability twice per day for 1 week. Neuronal death was evaluated with Fluoro Jade-B and NeuN staining to determine whether CQ has neuroprotective effects after TBI. The number of degenerating neurons (FJB (+)) and live neurons (NeuN (+)) was similar in vehicle and in CQ-treated rats at 1 week after TBI. Neurogenesis was evaluated using BrdU, Ki67 and doublecortin (DCX) immunostaining 1 week after TBI. The number of BrdU, Ki67 and DCX positive cell was increased after TBI. However, the number of BrdU, Ki67 and DCX positive cells was significantly decreased by CQ treatment. The present study shows that zinc chelation did not prevent neurodegeneration but did reduce TBI-induced progenitor cell proliferation and neurogenesis. Therefore, this study suggests that zinc has an essential role for modulating hippocampal neurogenesis after TBI.  相似文献   

2.
3.
Enhancement of hippocampal neurogenesis by lithium   总被引:26,自引:0,他引:26  
Increasing evidence suggests that mood disorders are associated with a reduction in regional CNS volume and neuronal and glial cell atrophy or loss. Lithium, a mainstay in the treatment of mood disorders, has recently been demonstrated to robustly increase the levels of the cytoprotective B-cell lymphoma protein-2 (bcl-2) in areas of rodent brain and in cultured cells. In view of bcl-2's antiapoptotic and neurotrophic effects, the present study was undertaken to determine if lithium affects neurogenesis in the adult rodent hippocampus. Mice were chronically treated with lithium, and 5-bromo-2-deoxyuridine (BrdU) labeling of dividing cells was conducted over 12 days. Immunohistochemical analysis was undertaken 1 day after the last injection, and three-dimensional stereological cell counting revealed that lithium produced a significant 25% increase in the BrdU-labeled cells in the dentate gyrus. Double-labeling immunofluorescence studies were undertaken to co-localize BrdU-positive cells with neuron-specific nuclear protein and showed that approximately 65% of the cells were double-labeled. These results add to the growing body of evidence suggesting that mood stabilizers and antidepressants exert neurotrophic effects and may therefore be of use in the long-term treatment of other neuropsychiatric disorders.  相似文献   

4.
Identification of neural stem and progenitor cells (NPCs) in vitro and in vivo is essential to the use of developmental and disease models of neurogenesis. The dog is a valuable large animal model for multiple neurodegenerative diseases and is more closely matched to humans than rodents with respect to brain organization and complexity. It is therefore important to determine whether immunohistochemical markers associated with NPCs in humans and rodents are also appropriate for the dog. The NPC markers CD15, CD133, nestin, GFAP and phosphacan (DSD-1) were evaluated in situ in the canine rostral telencephalon, hippocampal dentate gyrus, and cerebellum at different postnatal time-points. Positive staining results were interpreted in the context of region and cellular morphology. Our results showed that neurospheres and cells within the rostral subventricular zone (SVZ), dentate gyrus subgranular zone (SGZ), and white matter tracts of the cerebellum were immunopositive for CD15, nestin and GFAP. Neurospheres and the cerebellum were immunonegative for CD133, whereas CD133 staining was present in the postnatal rostral SVZ. Anti-phosphacan antibody staining delineated the neurogenic niches of the rostral lateral ventricle SVZ and the hippocampal SGZ. Positive staining for phosphacan was also noted in white matter tracts of the cerebellum and within the Purkinje layer. Our results showed that in the dog these markers were associated with regions shown to be neurogenic in rodents and primates.  相似文献   

5.
In adult mammalian brains, neurogenesis persists in the subventricular zone of the lateral ventricles (SVZ) and the dentate gyrus (DG) of the hippocampus. Although evidence suggest that adult neurogenesis in these two regions is subjected to differential regulation, the underlying mechanism is unclear. Here, we show that the RNA-binding protein FXR2 specifically regulates DG neurogenesis by reducing the stability of Noggin mRNA. FXR2 deficiency leads to increased Noggin expression and subsequently reduced BMP signaling, which results in increased proliferation and altered fate specification of neural stem/progenitor cells in DG. In contrast, Noggin is not regulated by FXR2 in the SVZ, because Noggin expression is restricted to the ependymal cells of the lateral ventricles, where FXR2 is not expressed. Differential regulation of SVZ and DG stem cells by FXR2 may be a key component of the mechanism that governs the different neurogenic processes in these two adult germinal zones.  相似文献   

6.
The adult hippocampus is one of the primary neural structures involved in memory formation. In addition to synapse-specific modifications thought to encode information at the subcellular level, changes in the intrahippocampal neuro-populational activity and dynamics at the circuit-level may contribute substantively to the functional capacity of this region. Within the hippocampus, the dentate gyrus has the potential to make a preferential contribution to neural circuit modification owing to the continuous addition of new granule cell population. The integration of newborn neurons into pre-existing circuitry is hypothesized to deliver a unique processing capacity, as opposed to merely replacing dying granule cells. Recent studies have begun to assess the impact of hippocampal neurogenesis by examining the extent to which adult-born neurons participate in hippocampal networks, including when newborn neurons become engaged in ongoing network activity and how they modulate circuit dynamics via their unique intrinsic physiological properties. Understanding the contributions of adult neurogenesis to hippocampal function will provide new insight into the fundamental aspects of brain plasticity, which can be used to guide therapeutic interventions to replace neural populations damaged by disease or injury.  相似文献   

7.
8.
9.
Cheng X  Li Y  Huang Y  Feng X  Feng G  Xiong ZQ 《Cell research》2011,21(2):338-349
Research over the past decades has demonstrated that adult brain produces neural progenitor cells which proliferate and differentiate to newborn neurons that integrate into the existing circuit. However, detailed differentiation processes and underlying mechanisms of newly generated neurons are largely unknown due to the limitation of available methods for labeling and manipulating neural progenitor cells and newborn neurons. In this study, we designed a tightly controlled, noninvasive system based on Cre/loxP recombination to achieve long-term tracing and genetic manipulation of adult neurons in vivo. In this system, tamoxifen-inducible recombinase, CreER(T2), was driven by BAC-based promoter of doublecortin (DCX, a marker of newborn neurons). By crossing this Cre line with reporter mouse, we found that newborn neurons in the dentate gyrus (DG) could be selectively pulse-labeled by tamoxifen-induced expression of yellow fluorescent protein (YFP). YFP-positive neurons were identified by coimmunostaining with cell type-specific markers and characterized by electrophysiological recording. Furthermore, analysis of the migration of these neurons showed that the majority of these labeled neurons migrated to the inner part of granule cell layer. Moreover, spine growth of inner molecular layer of newborn granule neurons takes a dynamic pattern of invert U-shape, in contrast to the wedge-shaped change in the outer molecular layer. Our transgenic tool provides an efficient way to selectively label and manipulate newborn neuron in adult mouse DG.  相似文献   

10.
Luo CX  Zhu XJ  Zhou QG  Wang B  Wang W  Cai HH  Sun YJ  Hu M  Jiang J  Hua Y  Han X  Zhu DY 《Journal of neurochemistry》2007,103(5):1872-1882
Nitric oxide (NO), a free radical with signaling functions in the CNS, is implicated in some developmental processes, including neuronal survival, precursor proliferation, and differentiation. However, neuronal nitric oxide synthase (nNOS) -derived NO and inducible nitric oxide synthase (iNOS) -derived NO play opposite role in regulating neurogenesis in the dentate gyrus after cerebral ischemia. In this study, we show that focal cerebral ischemia reduced nNOS expression and enzymatic activity in the hippocampus. Ischemia-induced cell proliferation in the dentate gyrus was augmented in the null mutant mice lacking nNOS gene (nNOS−/−) and in the rats receiving 7-nitroindazole, a selective nNOS inhibitor, after stroke. Inhibition of nNOS ameliorated ischemic injury, up-regulated iNOS expression, and enzymatic activity in the ischemic hippocampus. Inhibition of nNOS increased and iNOS inhibitor decreased cAMP response element-binding protein phosphorylation in the ipsilateral hippocampus in the late stage of stroke. Moreover, the effects of 7-nitroindazole on neurogenesis after ischemia disappeared in the null mutant mice lacking iNOS gene (iNOS−/−). These results suggest that reduced nNOS is involved in ischemia-induced hippocampal neurogenesis by up-regulating iNOS expression and cAMP response element-binding protein phosphorylation.  相似文献   

11.
There are several known neurogenic areas including subventricular zone and subgranular layer in the dentate gyrus of the hippocampus. Both germinal centers exhibit an age-dependent decline in cell proliferation and neurogenesis, which may be associated with age-related decline in brain function. We recently identified the subcallosal zone (SCZ) as a novel neural stem cell niche with a potential to spontaneously produce new neuroblasts. We examined whether SCZ neurogenesis is also regulated by the age of mice. The number of newly generated neuroblasts was reduced in the SCZ with age, and only marginal number of DCX-labeled neuroblasts was found in 6-month-old SCZ, which is most likely due to reduced proliferation of progenitor cells and loss of neural stem cells (NSCs). This age-dependent changes in the SCZ occurred earlier than that of other neurogenic brain regions. The neurosphere assay in vitro confirmed the depletion of NSCs within the SCZ of young adults. However, marked induction of neuroblast production in the SCZ was seen in 6-month-old mice after traumatic brain injury. Taken together, these results indicate that a rapid decline in SCZ neurogenesis in mice is due to depletion of NSCs and reduced capacity to produce neuroblasts.  相似文献   

12.
Colorectal cancer is the second common cause of death worldwide. Lamin B2 (LMNB2) is involved in chromatin remodeling and the rupture and reorganization of nuclear membrane during mitosis, which is necessary for eukaryotic cell proliferation. However, the role of LMNB2 in colorectal cancer (CRC) is poorly understood. This study explored the biological functions of LMNB2 in the progression of colorectal cancer and explored the possible molecular mechanisms. We found that LMNB2 was significantly upregulated in primary colorectal cancer tissues and cell lines, compared with paired non-cancerous tissues and normal colorectal epithelium. The high expression of LMNB2 in colorectal cancer tissues is significantly related to the clinicopathological characteristics of the patients and the shorter overall and disease-free cumulative survival. Functional analysis, including CCK8 cell proliferation test, EdU proliferation test, colony formation analysis, nude mouse xenograft, cell cycle, and apoptosis analysis showed that LMNB2 significantly promotes cell proliferation by promoting cell cycle progression in vivo and in vitro. In addition, gene set enrichment analysis, luciferase report analysis, and CHIP analysis showed that LMNB2 promotes cell proliferation by regulating the p21 promoter, whereas LMNB2 has no effect on cell apoptosis. In summary, these findings not only indicate that LMNB2 promotes the proliferation of colorectal cancer by regulating p21-mediated cell cycle progression, but also suggest the potential value of LMNB2 as a clinical prognostic marker and molecular therapy target.Subject terms: Cancer, Diseases  相似文献   

13.
Throughout development cells make the decision to proliferate, arrest or die. Control of this process is essential for normal development, with unrestrained cell proliferation and cell death underling the origin and progression of disease. The cell-cycle is tightly regulated by a number of factors including the cyclin-dependent kinase inhibitor 1A (Cdkn1a), termed p21 (or Cip1 or WAF1). p21 acts as a negative regulator of cell-cycle progression by binding and inhibiting complexes formed between the cyclin-dependent kinases and their catalytic partners the cyclins. In this report we identify the temporal spatial expression profile of p21 in the developing mid-term mouse embryo using a p21-LacZ reporter mouse line. Expression of p21 was restricted to specific regions with a correspondence to both areas of terminal differentiation and active remodelling. A complex temporal and spatial relationship between p21 expression and regions of apoptosis was evident. A protective role with regard to apoptosis for p21 is proposed.  相似文献   

14.
Currently, there remains a great need to elucidate the molecular mechanism of acute myocardial infarction in order to facilitate the development of novel therapy. Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is a member of the ASPP family proteins and an evolutionarily preserved inhibitor of p53 that is involved in many cellular processes, including apoptosis of cancer cells. The purpose of this study was to investigate the possible role of iASPP in acute myocardial infarction. The protein level of iASPP was markedly reduced in the ischemic hearts in vivo and hydrogen peroxide-exposed cardiomyocytes in vitro. Overexpression of iASPP reduced the infarct size and cardiomyocyte apoptosis of mice subjected to 24 h of coronary artery ligation. Echocardiography showed that cardiac function was improved as indicated by the increase in ejection fraction and fractional shortening. In contrast, knockdown of iASPP exacerbated cardiac injury as manifested by impaired cardiac function, increased infarct size, and apoptosis rate. Mechanistically, overexpression of iASPP inhibited, while knockdown of iASPP increased the expressions of p53 and Bax, the key regulators of apoptosis. Taken together, our results suggested that iASPP is an important regulator of cardiomyocyte apoptosis, which represents a potential target in the therapy of myocardial infarction.  相似文献   

15.
16.

Background

Oestradiol is a steroid hormone that exerts extensive influence on brain development and is a powerful modulator of hippocampal structure and function. The hippocampus is a critical brain region regulating complex cognitive and emotional responses and is implicated in the aetiology of several mental health disorders, many of which exhibit some degree of sex difference. Many sex differences in the adult rat brain are determined by oestradiol action during a sensitive period of development. We had previously reported a sex difference in rates of cell genesis in the developing hippocampus of the laboratory rat. Males generate more new cells on average than females. The current study explored the effects of both exogenous and endogenous oestradiol on this sex difference.

Methods

New born male and female rat pups were injected with the mitotic marker 5-bromo-2-deoxyuridine (BrdU) and oestradiol or agents that antagonize oestradiol action. The effects on cell number, proliferation, differentiation and survival were assessed at several time points. Significant differences between groups were determined by two- or thee-Way ANOVA.

Results

Newborn males had higher rates of cell proliferation than females. Oestradiol treatment increased cell proliferation in neonatal females, but not males, and in the CA1 region many of these cells differentiated into neurons. The increased rate of proliferation induced by neonatal oestradiol persisted until at least 3 weeks of age, suggesting an organizational effect. Administering the aromatase inhibitor, formestane, or the oestrogen receptor antagonist, tamoxifen, significantly decreased the number of new cells in males but not females.

Conclusion

Endogenous oestradiol increased the rate of cell proliferation observed in newborn males compared to females. This sex difference in neonatal neurogenesis may have implications for adult differences in learning strategy, stress responsivity or vulnerability to damage or disease.  相似文献   

17.
Insulin stimulation of gene expression mediated by p21ras activation.   总被引:30,自引:3,他引:30       下载免费PDF全文
In fibroblasts, insulin is a weak mitogen and does not induce expression of c-fos, c-jun or p33. However, increasing the expression levels of either normal p21Hras or the insulin receptor, but not mutant p21Hras, enables insulin to induce the expression of these genes. In cells expressing elevated levels of insulin receptor, this process involves a rapid increase in p21rasGTP levels (from 20% to 70% GTP as a percentage of total guanine nucleotides). No increase in p21rasGTP levels was observed after PDGF and EGF stimulation of cells expressing high levels of the cognate receptor, stressing the specificity of the insulin-induced increase. We conclude that in fibroblasts, p21ras is an intermediate of the insulin signal transduction pathway involved in the regulation of gene expression and mitogenicity.  相似文献   

18.
The development of strategies capable to promote nervous system plasticity in adulthood is nowadays an important aim in neuroscience to improve not only cognitive abilities but also to ameliorate pathological dysfunctions. Several studies have demonstrated that adult neurogenesis is regulated by many physiological and pathological stimuli at almost every stage, from proliferation of neuronal precursors until integration and activation of newly formed neurons in the preexisting network. We review the process of generating functional neurons from precursors in the adult brain and its implications in intellectual disability disorders.  相似文献   

19.
20.
ras p21 GTPase-activating protein (GAP) has been proposed to interact with the putative effector domain of ras p21s, and smg p21, a ras p21-like guanine nucleotide binding protein (G protein), has been shown to have the same amino acid sequence as ras p21s in this region. In the present studies, we examined the effects of ras p21 GAP on the GTPase activity of smg p21 purified from human platelets, of smg p21 on the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 purified from Escherichia coli, and of c-Ha-ras p21 on the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. ras p21 GAP stimulated the GTPase activity of c-Ha-ras p21 but not that of smg p21. The GTP-bound form of smg p21, however, inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 in a dose-dependent manner. The half-maximum inhibition by smg p21 was obtained at 0.4 microM which was more potent than previously observed for ras p21 (2-200 microM). The GDP-bound form also inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21, but the efficiency was 40-50% that of the GTP-bound form. smg p21 GAP1 and -2 stimulated the GTPase activity of smg p21 but not that of c-Ha-ras p21. c-Ha-ras p21 did not inhibit the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. These results indicate that ras p21 GAP interacts with smg p21 without the subsequent stimulation of its GTPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号