首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Females of all species belonging to the family Drosophilidae have two kinds of sperm-storage organs: paired spherical spermathecae and a single elongate tubular seminal receptacle. We examined 113 species belonging to the genus Drosophila and closely allied genera and describe variation in female sperm-storage organ use and morphology. The macroevolutionary pattern of organ dysfunction and morphological divergence suggests that ancestrally both kinds of organs stored sperm. Loss of use of the spermathecae has evolved at least 13 times; evolutionary regain of spermathecal function has rarely if ever occurred. Loss of use of the seminal receptacle has likely occurred only once; in this case, all descendant species possess unusually elaborate spermathecae. Data further indicate that the seminal receptacle is the primary sperm-storage organ in Drosophila. This organ exhibits a pattern of strong correlated evolution with the length of sperm. The evolution of multiple kinds of female sperm-storage organs and the rapidly divergent and correlated evolution of sperm and female reproductive tract morphology are discussed.  相似文献   

2.
The presence of specialized female sperm-storage organs has been recognized as an important factor influencing postcopulatory sexual selection via sperm competition and cryptic female choice in internally fertilizing species. We morphologically examined the complexity of sperm-storage organs in the carrefour (spermatheca and fertilization pouch) in 47 species of stylommatophoran gastropods. We used partial 28S rDNA sequences to construct a molecular phylogeny, and applied maximum likelihood (ML) and Bayesian methods to investigate the history of spermatheca diversification and to test different hypotheses of sperm-storage organ evolution. The phylogenetic reconstruction supported several gains and losses of spermathecae. Moreover, a complex spermatheca was associated with the occurrence of love darts or other kinds of auxiliary copulatory organs, the presence of a long penial flagellum, and cross-fertilization as the predominant mating system. However, our results also suggest associations of carrefour complexity with body size, reproductive strategy (semelparity versus iteroparity), reproductive mode (oviparity versus ovoviviparity), and habitat type. Carrefour length in 17 snail species possessing a spermatheca was positively correlated with sperm length. Our results indicate that postcopulatory sexual selection as well as life history and habitat specificity may have influenced the evolution of female sperm-storage organs in hermaphroditic gastropods.  相似文献   

3.
In earwigs of the family Anisolabididae, male intromittent organs (virgae) sometimes break off inside female sperm-storage organs (spermathecae) during mating. I examined the effects of this genital breakage on the sperm storage capacity of females using Euborellia plebeja as a representative species. When genital breakage was artificially induced in virgin females, subsequent males successfully inseminated these females. However the sperm-storage capacity of these females was limited by the presence of broken virgae in their spermathecae. In another experiment, genital breakage was experimentally induced in the spermathecae of inseminated females, and their reproductive performance was then monitored for 60 days. In all of four cases where the entire piece of the broken virga remained inside the spermatheca, females deposited fertile eggs (more than 60% hatchability). The average number of clutches, that of eggs laid, and that of hatchlings were similar to those of controls. On the other hand, females laid no eggs in the other two cases where the broken virgae protruded from the spermathecal opening. I discuss the relevance of the results to the mating system and possible removal of rival sperm, which has been reported for E. plebeja. Electronic Publication  相似文献   

4.
The spermathecae of ten female Amphiuma tridactylum were examined by light and electron microscopy during the presumed mating and ovipository seasons (March–August) in Louisiana. Spermathecae were simple tubuloalveolar glands in the dorsal wall of the cloaca. Six of the ten specimens were vitellogenic, and all of these specimens contained sperm in their spermathecae and had secretory activity in the spermathecal epithelium. Two nonvitellogenic females also had sperm in their spermathecae and active epithelial cells, whereas the other nonvitellogenic females lacked stored sperm and secretory activity in the spermathecae. In specimens storing sperm from March–May, the sperm were normal in cytology, and secretory vacuoles were contained within the epithelium. In the August sample, however, evidence of sperm degradation was present, and secretory material had been released into the lumen by an apocrine process. We therefore hypothesize that the spermathecal secretions function in sperm degeneration. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Female insects generally store sperm received during mating in specific organs of their reproductive tract, i.e., the spermathecae, which keep the sperm alive for a long time until fertilization occurs. We investigated spermatheca morphology and ultrastructure in the psylloidean insect Trioza alacris (Flor, 1861 ) in which spheroidal sperm packets that we refer to as ‘spermatodoses’ are found after mating. The ectoderm‐derived epithelium of the sac‐shaped spermatheca that has a proximal neck, consists of large secretory and flat cuticle‐forming cells. Secretory cells are characterized by a wide extracellular cavity, bordered by microvilli, in which electron‐dense secretion accumulates before discharge into the spermathecal lumen. The cuticle‐forming cells produce the cuticular intima of the organ and a peculiar specialized apical structure, through which secretion flows into the lumen. At mating, the male transfers bundles of sperm cells embedded in seminal fluid into the spermathecal neck. Sperm cells proceed towards the spermathecal sac lumen, where they are progressively compacted and surrounded with an envelope that also encloses secretions of both male and female origin. We describe the formation of these sperm containing structures and document the contribution of the female secretion to spermatodose or female‐determined spermatophore construction. We also discuss the choice of the term ‘spermatodose’ for T. alacris and suggest it be used to refer to sperm masses constructed in the female reproductive organs, at least when they involve the contribution of female secretion. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
In northern Indiana, the mating season of Plethodon cinereus occurs after hibernation from March until June, when oviposition begins. During the mating season, a female stores sperm in its spermatheca, a compound tubular gland in the roof of the cloaca. The apical cytoplasm of the spermathecal epithelium is filled with large secretory vacuoles whose product is released while sperm are stored. Females induced to oviposit in June and July by injections of human chorionic gonadotropin (hCG) still retain much sperm 1 month after oviposition, but secretory vacuoles are absent in all specimens sacrificed in July and August. Instead, some sperm are embedded in the spermathecal epithelium with resultant spermiophagy involving lysosomes. A female sacrificed in September 2 months after oviposition possesses scant sperm, but spermiophagy alone does not seem extensive enough to account for the decrease in sperm numbers. Females sacrificed in October prior to hibernation lack sperm in their spermathecae; some secretory vacuoles are present, but they are not as numerous or as enlarged as in specimens collected in March and May. Inter- and intrafamilial differences in the cytology of sperm storage may not be phyletically informative at the family level but related to species-specific reproductive adaptations. J. Morphol. 234:131–146, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
A consequence of multiple mating by females can be that the sperm of two or more males directly compete for the fertilisation of ova inside the female reproductive tract. Selection through sperm-competition favours males that protect their sperm against that of rivals and strategically allocate their sperm, e.g., according to the mating status of the female and the morphology of the spermatheca. In the majority of spiders, we encounter the otherwise unusual situation that females possess two independent insemination ducts, both ending in their own sperm storage organ, the spermatheca. Males have paired mating organs, but generally can only fill one spermatheca at a time. We investigated whether males of the African golden orb-web spider Nephila madagascariensis can prevent rival males from mating into the same spermatheca and whether the mating status of the female and/or the spermatheca causes differences in male mating behaviour. There was no significant difference in the duration of copulations into unused spermathecae of virgin and mated females. We found that copulations into previously inseminated spermathecae were generally possible, but shorter than copulations into the unused side of mated females or with virgins. Thus, male N. madagascariensis may have an advantage when they mate with virgins, but cannot prevent future males from mating. However, in rare instances, parts of the male genitals can completely obstruct a female genital opening.  相似文献   

8.
Cryptic, or post-copulatory, female choice could markedly affect the outcome of sperm competition, i.e. a female could differentially manipulate ejaculates within her own body, affecting the fertilization successes of her mating partners. Female yellow dung flies, Scathophaga (Scatophaga) stercoraria, have three spermathecae, the sperm-storage organs, and can to some extent store the sperm of different males in different places. I show that a female's body size, as well as those of her mates, influences the process of sperm storage. Furthermore, females lay eggs of different genotypes under different environmental conditions. Females use both cues correlated with single locus variation (at the locus for the enzyme phosphoglucomutase, PGM) and quantitative trait variation (in body size and development time) when using sperm to fertilize their eggs. It is proposed that this allows a female to match the genotypes of her offspring to the conditions in which the larvae must grow, thus increasing their subsequent fitness. I describe an experiment where larvae of different PGM genotypes were raised in different environments and the most successful genotype was different in different environments. The complexity of the female reproductive system may therefore have evolved because the best father for a female's offspring, from the female's viewpoint, is different under different environmental conditions. The effect interacts with the established male-determined effects to influence the outcome of sperm competition.  相似文献   

9.
Females as well as males can influence the outcome of sperm competition, and may do so through the anatomy of their reproductive tracts. Female Drosophila melanogaster store sperm in two morphologically distinct organs: a single seminal receptacle and, normally, two spermathecae. These organs have different temporal roles in sperm storage. To examine the association between sperm storage organ morphology and sperm competition, we used a mutant type of female with three spermathecae. Although the common measure of sperm competition, P(2), did not differ between females with two and three spermathecae, the pattern of sperm use over time indicated that female morphology did affect male reproductive success. The rate of offspring production by females with three spermathecae rose and fell more rapidly than by females with two spermathecae. If females remate or die before using up second male sperm, then second male reproductive success will be higher when they mate with females with three spermathecae. The results indicate that temporal patterns of sperm use as well as P(2) should be taken into account when measuring the outcome of sperm competition.  相似文献   

10.
Abstract.  Female animals that use sperm from a single mating to fertilize eggs over an extended period require efficient mechanisms for sperm storage and use. There have been few studies of these mechanisms in tephritid flies. Mating, copula duration, sperm storage and sperm usage patterns are assessed in an Australian tephritid, the Queensland fruit fly ( Bactrocera tryoni ; a.k.a. 'Q-fly'). In particular, the present study investigates whether each of these aspects of mating varies in relation to female size or male size, whether sperm storage patterns change over time after mating (1, 5, 10 and 15 days), and the relative roles of the ventral receptacle and the two spermathecae as sperm storage organs. Large females are more likely to mate than are small females, and are also more fecund in the first 5 days after mating. Females are more likely to store some sperm and, among those that store some sperm, store more sperm if their mate is large. Most sperm are stored in the spermathecae (median = 97%), often with high levels of asymmetry between the two spermathecae. Asymmetry of sperm storage is related to number of sperm stored, but not to male or female size. Total number of stored sperm declines over the 15 days after mating, but this decrease in sperm numbers only reflects changes in the spermathecae; numbers of sperm in the ventral receptacle remain unchanged over this period. As a consequence, the proportion of total sperm stored in the spermathecae declines relative to the ventral receptacle. These results are consistent with a system in which small numbers of sperm are maintained in the ventral receptacle for fertilizations, and are replenished by sperm from the spermathecae as required. Sperm distribution and usage patterns in Q-flies are comparable with recent findings in medflies, Ceratitis capitata , but differ markedly from patterns found in several Anastrepha species.  相似文献   

11.
Female sperm storage was studied in a population of Notophthalmus viridescens from South Carolina. Spermathecae initiate production of a glycoprotein secretory product in October. At this time ovarian follicles are immature (0.5–0.9 mm dia), and mating does not occur despite spermiation in males. Six of the 10 females collected in December had sperm in their spermathecae, indicating onset of mating. Unmated females collected in October and sacrificed in February and March possessed mature ovarian follicles (1.3–1.4 mm dia), and the spermathecae contained large secretory vacuoles 2–3 μm dia. Release of secretory product is concomitant with the appearance of sperm in the spermathecae. Thus mated females lack secretory vacuoles in the spermathecal epithelium, and additional synthesis of secretory product does not occur. All females collected in February and March have mated. Sperm are embedded in the spermathecal epithelium and are undergoing degradation in February. Degradation of sperm in the lumen and epithelium is evident in specimens examined from May and June. Atresia of ovarian follicles begins in April in captive specimens, and specimens captured from the bay in May are spent. A general postbreeding emigration from the pond occurs in summer. Fourteen females collected 7 March were injected with human chorionic gonadotropin (hCG) on 9 March and laid fertile eggs 10–18 March. Two of these females were sacrificed each month from April-September; all retained some sperm in their spermathecae, but further oviposition did not occur. Four females were kept 1 year after oviposition of fertile eggs, and oviposition again was induced with hCG; these eggs were infertile, and spermathecae lacked sperm. Spermathecae are inactive from June-September in captive and wild-caught specimens. Sperm may be stored effectively up to 6 months (December-May), and no evidence was found for retention of viable sperm from one breeding season to the next. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Brachyuran crabs in the family Cancridae are found in a variety of habitats, ranging from 'open' sandy or muddy grounds to 'structured' rocky bottoms rich in refuge space. Cancer gracilis Dana inhabits shallow open habitats in the north-east Pacific Ocean. Females in all reproductive conditions aggregate in relatively small areas, where mating activity appears most intense. Maximum mating activity was observed towards the end of the spawning/hatching season (August). Females play an active role in mating, often initiating interactions with the prospective male partner. Mating in the field was non-assortative with respect to size. There was no indication of direct mate choice by either males or females; resolution of male-male competitive interactions was size-based. Males below minimum mating size (77 mm carapace width) had spermatophores in the vas deferens but did not react to receptive females.
Sperm competition is likely because sperm can be retained across moults and multiple copulations are possible within a receptive period. Female spermathecae are of the 'ventral' type (contrary to what has been indicated for cancrids), and during intercourse are beyond the reach of male gonopods. Mechanisms to exclude competing sperm include male-produced sperm plugs and post-copulatory mate guarding.
Results are discussed in the context of the 'structured-to-open' habitat gradient, which may underlay much of the diversity in cancrid reproductive ecology. We argue that, by comparison with C. magister (a larger size sympatric species also found in open habitats), (1) reproductive asynchrony and female gregariousness in C. gracilis increase the environmental potential for polygyny, resulting in a female defence polygynous mating system, and (2) reproductive asynchrony inflates the operational sex ratio, leading to stronger sexual selection.  相似文献   

13.
Postcopulatory sexual selection occurs when sperm from multiple males occupy a female’s reproductive tract at the same time and is expected to generate strong selection pressures on traits related to competitive fertilization success. However, knowledge of competitive fertilization success mechanisms and characters targeted by resulting selection is limited, partially due to the difficulty of discriminating among sperm from different males within the female reproductive tract. Here, we resolved mechanisms of competitive fertilization success in the promiscuous flour beetle Tribolium castaneum. Through creation of transgenic lines with fluorescent-tagged sperm heads, we followed the fate of focal male sperm in female reproductive tracts while tracking paternity across numerous rematings. Our results indicate that a given male’s sperm persist and fertilize eggs through at least seven rematings. Additionally, the proportion of a male’s sperm in the bursa (the site of spermatophore deposition), which is influenced by both timing of female’s ejecting excess sperm and male size, significantly predicted paternity share in the 24 h following a mating. Contrary to expectation, proportional representation of sperm within the female’s specialized sperm-storage organ did not significantly predict paternity, though spermathecal sperm may play a role in fertilization when females do not have access to mates for longer time periods. We address the adaptive significance of the identified reproductive mechanisms in the context of T. castaneum’s unique mating system and ecology.  相似文献   

14.
Promiscuous mating systems provide the opportunity for females to bias fertilization toward particular males. However, distinguishing between male sperm competition and active female sperm choice is difficult for species with internal fertilization. Nevertheless, species that store and use sperm of different males in different storing structures and species where females are able to expel all or part of the ejaculates after copulation may be able to bias fertilization. We report a series of experiments aimed at providing evidence of female sperm choice in Euxesta eluta (Hendel), a species of ulidiid fly that expels and consumes ejaculates after copulation. We found no evidence of greater reproductive success for females mated singly, multiply with the same male, or mated multiply with different males. Female E. eluta possesses two spherical spermathecae and a bursa copulatrix for sperm storage, with a ventral receptacle. There was no significant difference in storing more sperm in spermathecae 24 h after copulation than immediately after copulation. Females mated with protein-fed males had greater reproductive success than similar females mated to protein-deprived males. Protein-fed females prevented to consume the ejaculate, retained more sperm when mated to protein-fed males than when mated to protein-deprived males. Our results suggest that female E. eluta can exert control of sperm retention of higher quality males through ejaculate ejection.  相似文献   

15.
《Journal of morphology》2017,278(7):907-918
Sperm storage within the female reproductive tract has been reported as a reproductive strategy in several species of vertebrates and invertebrates. However, the morphological structures that allow for sperm to be stored and kept viable for long periods are relatively unknown in osteichthyes. We use histological and stereological tools to identify and quantify sperm storage structures (spermathecae) in 12 species of viviparous Poeciliidae. We found spermathecae in nine species, six of which exhibit superfetation (the ability of females to simultaneously carry within the ovary two or more broods of embryos at different stages of development). These spermathecae are folds of ovarian tissue that close around spermatozoa. We compared the number and size (volume) of spermathecae between species with and without superfetation. Species that exhibit superfetation had a significantly higher number of spermathecae than species that do not exhibit this reproductive strategy. In addition, we found that the mean volume of spermathecae and total volume of spermathecae present in the ovary are marginally higher in species with superfetation. Our results contribute to the understanding of the morphological structures that allow for sperm storage in viviparous osteichthyes and suggest a positive relationship between superfetation and the capacity of females to store sperm.  相似文献   

16.
Females of the marbled salamander, Ambystoma opacum, store sperm in exocrine glands called spermathecae in the roof of the cloaca. Eggs are fertilized by sperm released from the spermathecae during oviposition. Some sperm remain in the spermathecae following oviposition, but these sperm degenerate within a month and none persists more than 6 mo after oviposition. Thus, sperm storage between successive breeding seasons does not occur. Apical secretory vaculoes are abundant during the fall mating season and contain a substance that is alcian blue+ at pH 2.5. Production of secretory vacuoles decreases markedly after oviposition, and the glands are inactive by the summer months. Ambystoma opacum is a terrestrial breeder, and some mating occurs prior to arrival at pond basins where oviposition occurs. Mating prior to arrival at the ovipository site may prolong the breeding season, leading to fitness implications for both males and females. Females have opportunities for more matings, and the possibilities for sperm competition in the spermathecae are enhanced. © 1995 Wiley-Liss, Inc.  相似文献   

17.
This study is the first report on the ultrastructure of the sperm storage glands (spermathecae) in the salamander Rhyacotriton variegatus. The population studied is associated with cold-water, rocky streams of the redwood (Sequoia) zone in northern California. Males possess sperm in their vasa deferentia and undergo spermiation throughout the year, but mating is seasonal. Most females with large, vitellogenic follicles (2.0-3.9 mm mean dia.) collected from February-June contain sperm in their spermathecae, although some females with large follicles lack sperm. Other mature-size females collected during this period have small ovarian follicles (0.9-1.2 mm mean dia.) and lack stored sperm. All females collected from September-November have small follicles (0.6-1.6 mm mean dia.) and lack sperm, except in one instance in which a female collected in November had a small amount of degraded sperm, apparently retained from the previous breeding season. The spermathecae consist of simple tubulo-alveolar glands in which the neck tubules produce a mucoid secretory product, and the distal bulbs, where sperm are stored, contain secretory vacuoles of uniform density that stain positively for glycosaminoglycans. In specimens containing sperm, some bulbs have abundant sperm and others lack sperm, but the ultrastructure is similar in both conditions. The acini contain columnar epithelial cells with wide intercellular canaliculi, and a merocrine process releases the secretion. Spermiophagy occurs. In specimens from spring and summer with small ovarian follicles, the neck tubules are similar to those of breeding females, but the distal bulbs are reduced to cords of cells lacking a discernible lumen. Secretory activity in the distal bulbs is initiated in the fall. Spermathecae of R. variegatus are most similar to those of a stream-dwelling plethodontid, Eurycea cirrigera.  相似文献   

18.
Both sexes of the earwig Euborellia plebeja (Dermaptera: Anisolabididae) mate frequently. The elongated intromittent organs of males are as long as their bodies. Previous studies have revealed that this organ is used to remove rival sperm from the female sperm-storage organ (spermatheca), the length of which is twice that of the female body. The fitness benefit of sperm removal was quantified using two mating experiments with paternity analysis. As expected, given that the sperm-removal organ is shorter than the sperm-storage organ, males gained only about 20% of paternity per single mating with sperm-saturated females. The significance of frequent repeated matings with the same female by males is discussed.  相似文献   

19.
Sperm storage organs allow females to temporally separate insemination from fertilization, manipulate ejaculates and control fertilization. In the reproductive tract of female fruit flies (Diptera: Tephritidae), sperm are found in two different organs--a pair or triplet of spermathecae, and a "fertilization chamber". In order to understand the specific function of each of these organs, we tested the following hypotheses: (1) Sperm are distributed equally amongst the various sperm storage organs; (2) Both organ types maintain sperm viability; and (3) Sperm used in fertilization come from the fertilization chamber. We counted sperm in spermathecae and fertilization chamber of Mediterranean fruit flies (Ceratitis capitata) every 3 days for 18 days following insemination, and used a live/dead staining technique to determine the viability of sperm in these organs. Finally, by extirpating spermathecae from inseminated females and allowing them to oviposit, we were able to identify the fertilization chamber as the source of fertilizing sperm. Numbers of sperm in the spermathecae declined from an average of 3575 on the day of copulation to 649, 18 days later. Conversely, the fertilization chamber maintained a fairly constant level of sperms, ranging between an average of 207 cells on day 3 to 115 sperms on day 18. Throughout the period we monitored, we found high levels of sperm viability in both organs (> 80%). Sperm viability was similarly high in the fertilization chambers of females without spermathecae. However, fertility of eggs laid by these females declined rapidly, as did the number of sperm in the fertilization chamber. We conclude that both the spermathecae and the fertilization chamber are active sperm storage organs, with separate functions: the spermathecae for long-term storage and the fertilization chamber, periodically filled by the spermathecae, a staging point for fertilizing sperm. We suggest that the use of both organs by females results in sperm economy, which adaptively prolongs the intervals between copulations.  相似文献   

20.
Sperm and female reproductive tract morphology are among the most rapidly evolving characters known in insects. To investigate whether interspecific variation in these traits results from divergent coevolution we examined testis size, sperm length and female reproductive tract morphology for evidence of correlated evolution using 13 species of diopsid stalk-eyed flies. We found that sperm dimorphism (the simultaneous production of two size classes of sperm by individual males) is ancestral and occurs in four genera while sperm monomorphism evolved once and persists in one genus. The length of ''long-sperm'' types, though unrelated to male body or testis size, exhibits correlated evolution with two regions of the female reproductive tract, the spermathecae and ventral receptacle, where sperm are typically stored and used for fertilization, respectively. Two lines of evidence indicate that ''short sperm'', which are probably incapable of fertilization, coevolve with spermathecae. First, loss of sperm dimorphism coincides phylogenetically with reduction or loss of spermathecae. Second, evolutionary change in short-sperm length correlates with change in spermathecal size but not spermathecal duct length or ventral receptacle length. Morphological coevolution between sperm and female reproductive tracts is consistent with a history of female-mediated selection on sperm length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号