首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characterization of Bacillus anthracis germinant receptors in vitro   总被引:2,自引:0,他引:2       下载免费PDF全文
Bacillus anthracis begins its infectious cycle as a metabolically dormant cell type, the endospore. Upon entry into a host, endospores rapidly differentiate into vegetative bacilli through the process of germination, thus initiating anthrax. Elucidation of the signals that trigger germination and the receptors that recognize them is critical to understanding the pathogenesis of B. anthracis. Individual mutants deficient in each of the seven putative germinant receptor-encoding loci were constructed via temperature-dependent, plasmid insertion mutagenesis and used to correlate these receptors with known germinant molecules. These analyses showed that the GerK and GerL receptors are jointly required for the alanine germination pathway and also are individually required for recognition of either proline and methionine (GerK) or serine and valine (GerL) as cogerminants in combination with inosine. The germinant specificity of GerS was refined from a previous study in a nonisogenic background since it was required only for germination in response to aromatic amino acid cogerminants. The gerA and gerY loci were found to be dispensable for recognition of all known germinant molecules. In addition, we show that the promoter of each putative germinant receptor operon, except that of the gerA locus, is active during sporulation. A current model of B. anthracis endospore germination is presented.  相似文献   

2.
Pulmonary exposure to Bacillus anthracis spores initiates inhalational anthrax, a life-threatening infection. It is known that dormant spores can be recovered from the lungs of infected animals months after the initial spore exposure. Consequently, a 60-day course antibiotic treatment is recommended for exposed individuals. However, there has been little information regarding details or mechanisms of spore persistence in vivo. In this study, we investigated spore persistence in a mouse model. The results indicated that weeks after intranasal inoculation with B. anthracis spores, substantial amounts of spores could be recovered from the mouse lung. Moreover, spores of B. anthracis were significantly better at persisting in the lung than spores of a non-pathogenic Bacillus subtilis strain. The majority of B. anthracis spores in the lung were tightly associated with the lung tissue, as they could not be readily removed by lavage. Immunofluorescence staining of lung sections showed that spores associated with the alveolar and airway epithelium. Confocal analysis indicated that some of the spores were inside epithelial cells. This was further confirmed by differential immunofluorescence staining of lung cells harvested from the infected lungs, suggesting that association with lung epithelial cells may provide an advantage to spore persistence in the lung. There was no or very mild inflammation in the infected lungs. Furthermore, spores were present in the lung tissue as single spores rather than in clusters. We also showed that the anthrax toxins did not play a role in persistence. Together, the results suggest that B. anthracis spores have special properties that promote their persistence in the lung, and that there may be multiple mechanisms contributing to spore persistence.  相似文献   

3.
The initiation of sporulation in Bacillus species is regulated by the phosphorelay signal transduction pathway, which is activated by several histidine sensor kinases in response to cellular and metabolic signals. Comparison of the protein components of the phosphorelay between Bacillus subtilis and Bacillus anthracis revealed high homology in the phosphorelay orthologs of Spo0F, Spo0B, and Spo0A. The sensor domains of sensor histidine kinases are poorly conserved between species, making ortholog recognition tenuous. Putative sporulation sensor histidine kinases of B. anthracis were identified by homology to the HisKA domain of B. subtilis sporulation sensor histidine kinases, which interacts with Spo0F. Nine possible kinases were uncovered, and their genes were assayed for complementation of kinase mutants of B. subtilis, for ability to drive lacZ expression in B. subtilis and B. anthracis, and for the effect of deletion of each on the sporulation of B. anthracis. Five of the nine sensor histidine kinases were inferred to be capable of inducing sporulation in B. anthracis. Four of the sensor kinases could not be shown to induce sporulation; however, the genes for two of these were frameshifted in all B. anthracis strains and one of these was also frameshifted in the pathogenic pXO1-bearing Bacillus cereus strain G9241. It is proposed that acquisition of plasmid pXO1 and pathogenicity may require a dampening of sporulation regulation by mutational selection of sporulation sensor histidine kinase defects. The sporulation of B. anthracis ex vivo appears to result from any one or a combination of the sporulation sensor histidine kinases remaining.  相似文献   

4.
Three Bacillus anthracis strains, formerly used as anti-anthrax vaccine strains in Argentina, were characterized from genetic and pathogenic perspectives. Southern blotting and PCR with pXO1 and pXO2 probes and primers, as well as pathogenicity and protection tests in guinea pigs and mice, were performed. Two of the B. anthracis strains contained both pXO1 and pXO2 plasmids, as did the fully virulent strains, while the third was a Sterne-type strain (pXO1+, pXO2-). The three strains were, however, markedly less pathogenic than a wild-type virulent strain. The methodology applied here may be used to characterize other B. anthracis strains.  相似文献   

5.
Cell wall-anchored surface proteins of gram-positive pathogens play important roles during the establishment of many infectious diseases, but the contributions of surface proteins to the pathogenesis of anthrax have not yet been revealed. Cell wall anchoring in Staphylococcus aureus occurs by a transpeptidation mechanism requiring surface proteins with C-terminal sorting signals as well as sortase enzymes. The genome sequence of Bacillus anthracis encodes three sortase genes and eleven surface proteins with different types of cell wall sorting signals. Purified B. anthracis sortase A cleaved peptides encompassing LPXTG motif-type sorting signals between the threonine (T) and the glycine (G) residues in vitro. Sortase A activity could be inhibited by thiol-reactive reagents, similar to staphylococcal sortases. B. anthracis parent strain Sterne 34F(2), but not variants lacking the srtA gene, anchored the collagen-binding MSCRAMM (microbial surface components recognizing adhesive matrix molecules) BasC (BA5258/BAS4884) to the bacterial cell wall. These results suggest that B. anthracis SrtA anchors surface proteins bearing LPXTG motif sorting signals to the cell wall envelope of vegetative bacilli.  相似文献   

6.
Surface proteins attached by sortases to the cell wall envelope of bacterial pathogens play important roles during infection. Sorting and attachment of these proteins is directed by C-terminal signals. Sortase B of S. aureus recognizes a motif NPQTN, cleaves the polypeptide after the Thr residue, and attaches the protein to pentaglycine cross-bridges. Sortase B of B. anthracis is thought to recognize the NPKTG motif, and attaches surface proteins to m-diaminopimelic acid cross-bridges. We have determined crystal structure of sortase B from B. anthracis and S. aureus at 1.6 and 2.0 A resolutions, respectively. These structures show a beta-barrel fold with alpha-helical elements on its outside, a structure thus far exclusive to the sortase family. A putative active site located on the edge of the beta-barrel is comprised of a Cys-His-Asp catalytic triad and presumably faces the bacterial cell surface. A putative binding site for the sorting signal is located nearby.  相似文献   

7.
Bacillus anthracis spores, the cause of anthrax, are enclosed by a prominent loose-fitting structure called the exosporium. The exosporium is composed of a basal layer and an external hair-like nap. The filaments of the hair-like nap are apparently formed by a single collagen-like glycoprotein called BclA, whereas several different proteins form or are tightly associated with the basal layer. In this study, we used immunogold electron microscopy to demonstrate that BxpB (also called ExsF) is a component of the exosporium basal layer. Binding to the basal layer by an anti-BxpB monoclonal antibody was greatly increased by the loss of BclA. We found that BxpB and BclA are part of a stable complex that appears to include the putative basal layer protein ExsY and possibly other proteins. Previous results suggested that BxpB was glycosylated; however, our results indicate that it is not a glycoprotein. We showed that DeltabxpB spores, which lack BxpB, contain an exosporium devoid of hair-like nap even though the DeltabxpB strain produces normal levels of BclA. These results indicated that BxpB is required for the attachment of BclA to the exosporium. Finally, we found that the efficiency of production of DeltabxpB spores and their resistance properties were similar to those of wild-type spores. However, DeltabxpB spores germinate faster than wild-type spores, indicating that BxpB suppresses germination. This effect did not appear to be related to the absence from DeltabxpB spores of a hair-like nap or of enzymes that degrade germinants.  相似文献   

8.
Sortases of Gram-positive bacteria catalyze the covalent C-terminal anchoring of proteins to the cell wall. Bacillus subtilis, a well-known host organism for protein production, contains two putative sortases named YhcS and YwpE. The present studies were aimed at investigating the possible sortase function of these proteins in B. subtilis. Proteomics analyses revealed that sortase-mutant cells released elevated levels of the putative sortase substrate YfkN into the culture medium upon phosphate starvation. The results indicate that YfkN required sortase activity of YhcS for retention in the cell wall. To analyze sortase function in more detail, we focused attention on the potential sortase substrate YhcR, which is co-expressed with the sortase YhcS. Our results showed that the sortase recognition and cell-wall-anchoring motif of YhcR is functional when fused to the Bacillus pumilus chitinase ChiS, a readily detectable reporter protein that is normally secreted. The ChiS fusion protein is displayed at the cell wall surface when YhcS is co-expressed. In the absence of YhcS, or when no cell-wall-anchoring motif is fused to ChiS, the ChiS accumulates predominately in the culture medium. Taken together, these novel findings show that B. subtilis has a functional sortase for anchoring proteins to the cell wall.  相似文献   

9.
Bacillus anthracis spores, the etiological agents of anthrax, possess a loosely fitting outer layer called the exosporium that is composed of a basal layer and an external hairlike nap. The filaments of the nap are formed by trimers of the collagenlike glycoprotein BclA. Multiple pentasaccharide and trisaccharide side chains are O linked to BclA. The nonreducing terminal residue of the pentasaccharide side chain is the unusual sugar anthrose. A plausible biosynthetic pathway for anthrose biosynthesis has been proposed, and an antABCD operon encoding four putative anthrose biosynthetic enzymes has been identified. In this study, we genetically and biochemically characterized the activities of these enzymes. We also used mutant B. anthracis strains to determine the effects on BclA glycosylation of individually inactivating the genes of the anthrose operon. The inactivation of antA resulted in the appearance of BclA pentasaccharides containing anthrose analogs possessing shorter side chains linked to the amino group of the sugar. The inactivation of antB resulted in BclA being replaced with only trisaccharides, suggesting that the enzyme encoded by the gene is a dTDP-β-l-rhamnose α-1,3-l-rhamnosyl transferase that attaches the fourth residue of the pentasaccharide side chain. The inactivation of antC and antD resulted in the disappearance of BclA pentasaccharides and the appearance of a tetrasaccharide lacking anthrose. These phenotypes are entirely consistent with the proposed roles for the antABCD-encoded enzymes in anthrose biosynthesis. Purified AntA was then shown to exhibit β-methylcrotonyl-coenzyme A (CoA) hydratase activity, as we predicted. Similarly, we confirmed that purified AntC had aminotransferase activity and that purified AntD displayed N-acyltransferase activity.Bacillus anthracis, the causative agent of anthrax, is a Gram-positive, rod-shaped soil bacterium that forms spores when deprived of essential nutrients (15). Spore formation begins with an asymmetric septation that divides the developing cell into a forespore compartment and a larger mother cell compartment, each of which contains a copy of the genome. The mother cell then engulfs the forespore and surrounds it with three protective layers: a cortex composed of peptidoglycan, a closely apposed proteinaceous coat, and a loosely fitting exosporium (10). Mother cell lysis releases the mature spore, which is dormant and capable of surviving in harsh environments for many years (17). When spores encounter an aqueous environment containing nutrients, they can germinate and grow as vegetative cells (21).Recently, interest in B. anthracis spores has intensified in response to their use as agents of bioterrorism. Of particular interest has been the outermost layer of the spore, the exosporium, which serves as a semipermeable barrier to potentially harmful macromolecules (8, 25) and as the vital first point of contact with the immune system of an infected host (11, 18, 30). The exosporium of B. anthracis and of closely related species, such as Bacillus cereus and Bacillus thuringiensis, is comprised of a paracrystalline basal layer and an external hairlike nap (1). The basal layer contains approximately 20 different proteins (20, 23), while the filaments of the nap are formed by trimers of a single collagenlike glycoprotein called BclA (2, 26). The central region of BclA contains a large number of GXX repeats, and the region varies in length in naturally occurring strains of B. anthracis, resulting in hairlike naps of differing lengths (22, 27). Most of the GXX repeats are GPT, and many of the threonine residues are glycosylated. Two major oligosaccharide side chains are present, a pentasaccharide and a trisaccharide, and both are linked to the protein through reducing terminal N-acetylgalactosamine (GalNAc) residues (3). Several studies have demonstrated that the oligosaccharides are antigenic and are exposed on the surface of Bacillus anthracis spores (14, 29). This makes them prime targets for both detection devices and immunoprophylaxis.We previously reported our use of hydrazinolysis to release BclA oligosaccharides from exosporium preparations (3). The primary product was a tetrasaccharide that formed as a result of the undesirable loss of the reducing terminal GalNAc residue of the pentasaccharide, a process called “peeling.” We determined that the oligosaccharide consisted of a linear chain of three rhamnose residues with a novel deoxyamino sugar at its nonreducing terminus. This unusual sugar, 2-O-methyl-4-(3-hydroxy-3-methylbutamido)-4,6-dideoxy-d-glucose, was given the trivial name anthrose.Rhamnose is the major sugar present in both the trisaccharide and the pentasaccharide, and a four-gene rhamnose biosynthetic operon was previously identified (22). Previously, we proposed a pathway for anthrose biosynthesis (Fig. (Fig.1)1) and identified a four-gene operon (Fig. (Fig.2)2) that is essential for its biosynthesis (5). An in-frame deletion of the first gene of the operon reduced the amount of anthrose by approximately 50%, whereas the deletion of any one of the other three genes totally abolished anthrose synthesis. Here, we describe the characterization of the altered oligosaccharide side chains of the four deletion mutants. We also cloned several genes that we predicted are involved in anthrose biosynthesis and demonstrated that the gene products possessed the expected biochemical activities.Open in a separate windowFIG. 1.Proposed biosynthetic pathway of anthrose. The pathway utilizes dTDP-4-keto-6-deoxy-α-d-glucose, an intermediate in rhamnose biosynthesis, and methylcrotonyl-CoA, derived from leucine catabolism. (Modified from reference 5.)Open in a separate windowFIG. 2.Anthrose operon and flanking genes. The four genes of the anthrose operon are antA (BAS3322), antB (BAS3321), antC (BAS3320), and antD (BAS3319). The operon is flanked by genes that encode a putative collagenase (BAS3323) and a putative methyltransferase (BAS3318). (Modified from reference 5.)  相似文献   

10.
Recently, iron acquisition and, more specifically, enzymes involved in siderophore biosynthesis have become attractive targets for discovery of new antibiotics. Accordingly, targeted inhibition of the biosynthesis of petrobactin, a virulence-associated siderophore encoded by the asb locus in Bacillus anthracis, may hold promise as a potential therapy against anthrax. This study describes the biochemical characterization of AsbC, the first reported 3,4-dihydroxybenzoic acid-AMP ligase, and a key component in the biosynthesis of DHB-spermidine (DHB-SP), the first isolable intermediate in petrobactin biosynthesis. AsbC catalyzes adenylation to the corresponding AMP ester of the unusual precursor 3,4-dihydroxybenzoate, in addition to benzoate substrates bearing hydrogen bond-donating substituents at the para and meta positions on the phenyl ring. In a second reaction, AsbC catalyzes transfer of the activated starter unit to AsbD, an aryl carrier protein similar to acyl and peptidyl carrier proteins that function in fatty acid, polyketide, and nonribosomal peptide biosynthesis. A third protein, AsbE, is shown to be responsible for condensation of 3,4-dihydroxybenzoyl-AsbD with spermidine, providing the DHB-spermidine arms that are linked to citrate for assembly of petrobactin. On the basis of the selective substrate profile of AsbC, a nonhydrolyzable analogue of 3,4-DHB-AMP was synthesized and shown to effectively inhibit AsbC function in vitro.  相似文献   

11.
The results of the prolonged and many-sided study of B. anthracis strain 81/1 by different authors are presented. The cultural and morphological, biochemical, antigenic, molecular-genetic characteristics of this strain give grounds for regarding it as a typical test strain to be used for the determination of the vaccines immunogenicity, the effectiveness of antibiotics and immunomodulators.  相似文献   

12.
13.
Cytology of Bacillus anthracis   总被引:9,自引:0,他引:9  
  相似文献   

14.
PCR analysis of 198 Bacillus anthracis isolates revealed a variable region of DNA sequence differing in length among the isolates. Five polymorphisms differed by the presence of two to six copies of the 12-bp tandem repeat 5'-CAATATCAACAA-3'. This variable-number tandem repeat (VNTR) region is located within a larger sequence containing one complete open reading frame that encodes a putative 30-kDa protein. Length variation did not change the reading frame of the encoded protein and only changed the copy number of a 4-amino-acid sequence (QYQQ) from 2 to 6. The structure of the VNTR region suggests that these multiple repeats are generated by recombination or polymerase slippage. Protein structures predicted from the reverse-translated DNA sequence suggest that any structural changes in the encoded protein are confined to the region encoded by the VNTR sequence. Copy number differences in the VNTR region were used to define five different B. anthracis alleles. Characterization of 198 isolates revealed allele frequencies of 6.1, 17.7, 59.6, 5.6, and 11.1% sequentially from shorter to longer alleles. The high degree of polymorphism in the VNTR region provides a criterion for assigning isolates to five allelic categories. There is a correlation between categories and geographic distribution. Such molecular markers can be used to monitor the epidemiology of anthrax outbreaks in domestic and native herbivore populations.  相似文献   

15.
Bovine Bacillus anthracis isolates from Cameroon were genetically characterized. They showed a strong homogeneity, and they belong, together with strains from Chad, to cluster Aβ, which appears to be predominant in western Africa. However, one strain that belongs to a newly defined clade (D) and cluster (D1) is penicillin resistant and shows certain phenotypes typical of Bacillus cereus.  相似文献   

16.
Morphogenesis of the Bacillus anthracis spore   总被引:1,自引:0,他引:1       下载免费PDF全文
Bacillus spp. and Clostridium spp. form a specialized cell type, called a spore, during a multistep differentiation process that is initiated in response to starvation. Spores are protected by a morphologically complex protein coat. The Bacillus anthracis coat is of particular interest because the spore is the infective particle of anthrax. We determined the roles of several B. anthracis orthologues of Bacillus subtilis coat protein genes in spore assembly and virulence. One of these, cotE, has a striking function in B. anthracis: it guides the assembly of the exosporium, an outer structure encasing B. anthracis but not B. subtilis spores. However, CotE has only a modest role in coat protein assembly, in contrast to the B. subtilis orthologue. cotE mutant spores are fully virulent in animal models, indicating that the exosporium is dispensable for infection, at least in the context of a cotE mutation. This has implications for both the pathophysiology of the disease and next-generation therapeutics. CotH, which directs the assembly of an important subset of coat proteins in B. subtilis, also directs coat protein deposition in B. anthracis. Additionally, however, in B. anthracis, CotH effects germination; in its absence, more spores germinate than in the wild type. We also found that SpoIVA has a critical role in directing the assembly of the coat and exosporium to an area around the forespore. This function is very similar to that of the B. subtilis orthologue, which directs the assembly of the coat to the forespore. These results show that while B. anthracis and B. subtilis rely on a core of conserved morphogenetic proteins to guide coat formation, these proteins may also be important for species-specific differences in coat morphology. We further hypothesize that variations in conserved morphogenetic coat proteins may play roles in taxonomic variation among species.  相似文献   

17.
Molecular diversity in Bacillus anthracis   总被引:3,自引:0,他引:3  
Molecular typing of Bacillus anthracis has been extremely difficult due to the lack of polymorphic DNA markers. We have identified nine novel variable number tandemly repeated loci from previously known amplified fragment length polymorphism markers or from the DNA sequence. In combination with the previously known vrrA locus, these markers provide discrimination power to genetically characterize B. anthracis isolates. The variable number tandem repeat (VNTR) loci are found in both gene coding (genic) and non-coding (non-genic) regions. The genic differences are 'in frame' and result in additions or deletion of amino acids to the predicted proteins. Due the rarity of molecular differences, the VNTR changes represent a significant portion of the genetic variation found within B. anthracis. This variation could represent an important adaptive mechanism. Marker similarity and differences among diverse isolates have identified seven major diversity groups that may represent the only world-wide B. anthracis clones. The lineages reconstructed using these data may reflect the dispersal and evolution of this pathogen.  相似文献   

18.
19.
炭疽杆菌致病性研究进展   总被引:4,自引:0,他引:4  
何湘  黄留玉   《微生物学通报》2004,31(4):101-105
炭疽杆菌是人类历史上第一个被发现的病原菌。炭疽杆菌的研究在近几年取得了较大进展 ,特别是本年度其基因组序列测定已完成并向全世界公布 ,进一步深化了对炭疽杆菌的研究。炭疽杆菌致病性的研究一直是炭疽杆菌研究的重点 ,近年来此方面的研究取得了很多新进展 ,从基因组、致病物质及致病机制 3个方面对此作一个简单的介绍。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号