首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of novel 2-arylpyrazolo[3,4-c]quinolin-4-(hetero)arylamides, designed as human (h) A(3) adenosine receptor antagonists, is reported. The new derivatives are endowed with nanomolar hA(3) receptor affinity and high selectivity versus hA(1), hA(2A) and hA(2B) receptors. Among the (hetero)aroyl residues introduced on the 4-amino group, the 2-furyl and 4-pyridyl rings turned out to be the most beneficial for hA(3) affinity (K(i)=3.4 and 5.0nM, respectively). An intensive molecular docking study to a rhodopsin-based homology model of the hA(3) receptor was carried out to obtain a 'structure-based pharmacophore model' that proved to be helpful for the interpretation of the observed affinities of the new hA(3) pyrazoloquinoline antagonists.  相似文献   

2.
A large series of piperazin-, piperidin- and tetrahydroisoquinolinamides of 4-(1,3-dialkyl-9-deazaxanthin-8-yl)phenoxyacetic acid were prepared through conventional or multiple parallel syntheses and evaluated for their binding affinity at the recombinant human adenosine receptors, chiefly at the hA(2B) and hA(2A) receptor subtypes. Several ligands endowed with high binding affinity at hA(2B) receptors, excellent selectivity over hA(2A) and hA(3) and a significant, but lower, selectivity over hA(1) were identified. Among them, piperazinamide derivatives 23 and 52, and piperidinamide derivative 69 proved highly potent at hA(2B) (K(i)=11, 2 and 5.5 nM, respectively) and selective towards hA(2A) (hA(2A)/hA(2B) SI=912, 159 and 630, respectively), hA(3) (hA(3)/hA(2B) SI=>100, 3090 and >180, respectively) and hA(1) (hA(1)/hA(2B) SI=>100, 44 and 120, respectively), SI being the selectivity index. A number of selected ligands tested in functional assays in vitro showed very interesting antagonist activities and efficacies at both A(2A) and A(2B) receptor subtypes, with pA(2) values close to the corresponding pK(i)s. Structure-affinity and structure-selectivity relationships suggested that the binding potency at the hA(2B) receptor may be increased by lipophilic substituents at the N4-position of piperazinamides and that an ortho-methoxy substituent at the 8-phenyl ring and alkyl groups at N1 larger than the ones at N3, in the 9-deazaxanthine ring, may strongly enhance the hA(2A)/hA(2B) SI.  相似文献   

3.
The study of some 4-substituted-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives, designed as hA(3) adenosine receptor antagonists, is reported. The new compounds bear on the four-position different acylamino, sulfonylamino, benzylureido and benzyloxy moieties, which have also been combined with a para-methoxy group on the 2-phenyl ring or with a nitro residue at the six-position. Many derivatives show high hA(3) adenosine receptor affinities and selectivities both versus hA(1) and hA(2A) receptors. The observed structure-affinity relationships of this class of antagonists have been exhaustively rationalized using the recently published ligand-based homology modeling (LBHM) approach. The selected 4-bismethanesulfonylamino-2-phenyl-1,2,4-triazolo[4,3-a]quinoxalin-1-one (13), which shows high hA(3) affinity (K(i)=5.5nM) and selectivity versus hA(1), hA(2A) (both selectivity ratios>1800) and hA(2B) (cAMP assay, IC(50)>10,000nM) receptors, was tested in an in vitro rat model of cerebral ischemia, proving to be effective in preventing the failure of synaptic activity, induced by oxygen and glucose deprivation in the hippocampus, and in delaying the occurrence of anoxic depolarization.  相似文献   

4.
Previously, G protein-coupled receptor (GPCR) agonists were tethered from polyamidoamine (PAMAM) dendrimers to provide high receptor affinity and selectivity. Here, we prepared GPCR ligand--dendrimer (GLiDe) conjugates from a potent adenosine receptor (AR) antagonist; such agents are of interest for treating Parkinson's disease, asthma, and other conditions. Xanthine amine congener (XAC) was appended with an alkyne group on an extended C8 substituent for coupling by Cu(I)-catalyzed click chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. These conjugates also contained triazole-linked PEG groups (8 or 22 moieties per 64 terminal positions) for increasing water-solubility and optionally prosthetic groups for spectroscopic characterization and affinity labeling. Human AR binding affinity increased progressively with the degree of xanthine substitution to reach K(i) values in the nanomolar range. The order of affinity of each conjugate was hA(2A)AR > hA(3)AR > hA(1)AR, while the corresponding monomer was ranked hA(2A)AR > hA(1)AR ≥ hA(3)AR. The antagonist activity of the most potent conjugate 14 (34 xanthines per dendrimer) was examined at the G(i)-coupled A(1)AR. Conjugate 14 at 100 nM right-shifted the AR agonist concentration--response curve in a cyclic AMP functional assay in a parallel manner, but at 10 nM (lower than its K(i) value), it significantly suppressed the maximal agonist effect in calcium mobilization. This is the first systematic probing of a potent AR antagonist tethered on a dendrimer and its activity as a function of variable loading.  相似文献   

5.
A number of 1,3-dialkyl-8-(hetero)aryl-9-OH-9-deazaxanthines were prepared and evaluated as ligands of recombinant human adenosine receptors (hARs). Several 1,3-dipropyl derivatives endowed with nanomolar binding affinity at hA(2B) receptors, but poor selectivity over hA(2A), hA(1) and hA(3) AR subtypes were identified. A comparison with the corresponding 7-OH- and 7,9-unsubstituted-deazaxanthines revealed that 9-OH-9-deazaxanthines are more potent hA(2B) ligands with lower partition coefficients and higher water solubility compared to the other two congeneric classes of deazaxanthines. An optimization of the para-substituent of the 8-phenyl ring of 9-OH-9-deazaxanthines led to the discovery of compound 38, which exhibited outstanding hA(2B) affinity (Ki=1.0 nM), good selectivity over hA(2A), hA(1) and hA(3) (selectivity indices=100, 79 and 1290, respectively) and excellent antagonist potency in a functional assay on rat A(2B) (pA(2B)=9.33).  相似文献   

6.
In an attempt to study the optimal combination of a phenyl ring at the C(2)-position and different substituents at the N(5)- and N(8)-positions towards the selective modulation of human A(3) adenosine receptors (hA(3)AR), we synthesized a new series of 2-para-(un)substituted-phenyl-pyrazolo-triazolo-pyrimidines bearing either a methyl or phenylethyl at N(8) and chains of variable length at N(5). Through biological evaluation, it was found that the majority of the compounds had good affinities towards the hA(3)AR in the low nanomolar range. Compound 16 possessed the best hA(3)AR affinity and selectivity profile (K(i)hA(3)=1.33 nM; hA(1)/hA(3)=4880; hA(2A)/hA(3)=1100) in the present series of 2-(substituted)phenyl-pyrazolo-triazolo-pyrimidine derivatives. In addition to pharmacological characterization, a molecular modeling investigation on these compounds further elucidated the effect of different substituents at the pyrazolo-triazolo-pyrimidine scaffold on affinity and selectivity to hA(3)AR.  相似文献   

7.
The adenosine A(2a) receptor belongs to the seven transmembrane helix G-protein-coupled receptor family, is abundant in striatum, vasculature and platelets and is involved in several physiological processes such as blood pressure regulation and protection of cells during anoxia. For structural and biophysical studies we have expressed the human adenosine A(2a) receptor (hA2aR) at high levels inserted into the Escherichia coli inner membrane, and established a purification scheme. Expression was in fusion with the periplasmic maltose-binding protein to levels of 10-20 nmol of receptor per L of culture, as detected with the specific antagonist ligand [(3)H]ZM241385. As the receptor C-terminus was proteolyzed upon solubilization, a protease-resistant but still functional receptor was created by truncation to Ala316. Addition of the sterol, cholesteryl hemisuccinate, allowed a stable preparation of functional hA2aR solubilized in dodecylmaltoside to be obtained, and, increased the stability of the receptor solubilized in other alkylmaltosides. Purification to homogeneity was achieved in three steps, including ligand affinity chromatography based on the antagonist xanthine amine congener. The purified hA2aR fusion protein bound [(3)H]ZM241385 with a K(d) of 0.19 nm and an average B(max) of 13.7 nmol x mg(-1) that suggests 100% functionality. Agonist affinities for the purified solubilized receptor were higher than those for the membrane-bound form. Sufficient pure, functional hA2aR can now be prepared regularly for structural studies.  相似文献   

8.
A collection of 25 2-(2'-furyl)-1,2,4-triazolo[1,5-a]quinoxalines incorporating different substitution patterns at position 4 have been synthesized and their binding affinity towards human adenosine receptors (hA(1), hA(2A), hA(2B) and hA(3)) was determined. The biological data show that several potent at hA(1), but lightly selective, adenosine ligands were identified. Moreover, these results confirmed the hypothesis that the structural modifications carried out on the 4-position of the tricyclic system produces a remarkable modification of the adenosine receptorial profile. A 3D-QSAR modelling study (GRIND/ALMOND methodology) performed on the hA(1) data gave further support to the pharmacological results, and it is presented as a useful tool for the future design of ligands with better pharmacological profiles.  相似文献   

9.
In a previous paper (Colotta V. et al., J. Med. Chem. 2000, 43, 1158), we reported the synthesis and the binding activity of some 4-oxo (A) and 4-amino (B) substituted 1,2,4-triazolo[4,3-a]quinoxalin-1-ones, bearing different substituents on the appended 2-phenyl ring (region 1), some of which were potent and selective A(1) or A(3) antagonists. To further investigate the SAR in this class of antagonists, in the present paper some 2-phenyl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives of both series A and B, bearing simple substituents on the benzofused moiety (region 2), are reported. The binding data at bovine A(1) (bA(1)) and A(2A)(bA(2A)) and at human A(3) (hA(3)) adenosine receptors (ARs) show that in series A (compounds 1, 4-11) the presence of substituents on the benzofused moiety is, in general, not advantageous for anchoring at all three AR subtypes, while within series B (compounds 12-21) it exerts a beneficial effect for both bA(1) and hA(3) AR affinities which span the low nanomolar range. In particular, among the 4-amino derivatives 12-21, the 8-chloro-6-nitro (compound 17) and the 6-nitro (compound 18) substitutions afford, respectively, the highest bA(1) and hA(3) AR affinity. Moreover, compound 18, additionally investigated in binding assays at human A(1) (hA(1)) receptors, shows a 183-fold selectivity for hA(3) versus hA(1) receptors. Finally, the SAR studies provide some new insights about the steric and lipophilic requirements of the hA(3) receptor binding pocket which accommodates the benzofused moiety of our 4-amino-triazoloquinoxalin-1-one derivatives.  相似文献   

10.
We studied the structural determinants of binding affinity and efficacy of adenosine receptor (AR) agonists. Substituents at the 2-position of adenosine were combined with N(6)-substitutions known to enhance human A(3)AR affinity. Selectivity of binding of the analogues and their functional effects on cAMP production were studied using recombinant human A(1), A(2A), A(2B), and A(3)ARs. Mainly sterically small substituents at the 2-position modulated both the affinity and intrinsic efficacy at all subtypes. The 2-cyano group decreased hA(3)AR affinity and efficacy in the cases of N(6)-(3-iodobenzyl) and N(6)-(trans-2-phenyl-1-cyclopropyl), for which a full A(3)AR agonist was converted into a selective antagonist; the 2-cyano-N(6)-methyl analogue was a full A(3)AR agonist. The combination of N(6)-benzyl and various 2-substitutions (chloro, trifluoromethyl, and cyano) resulted in reduced efficacy at the A(1)AR. The environment surrounding the 2-position within the putative A(3)AR binding site was explored using rhodopsin-based homology modeling and ligand docking.  相似文献   

11.
The synthesis of an array of 8-amino-2-aryl-[1,2,4]triazolo[1,5-a]pyridine-6-carboxyl amide derivatives is described for the first time. A subset of 20 derivatives were compared to their isomeric 5-amino-2-aryl-[1,2,4]triazolo[1,5-a]pyridine-7-carboxyl amide counterparts with regard to their potential to inhibit the human adenosine 2a (hA2a) receptor and their selectivity against the human adenosine 1 (hA1) receptor. Based on the analysis of H-bond donor/acceptor capabilities of the isomeric triazolopyridine pairs it can be concluded that the H-bond donor strength of the free amino functionality is the main determinant for hA2a inhibitory activity and hA1 selectivity.  相似文献   

12.
A glycosylation deficient (dG) version of the human adenosine 2a receptor (hA2aR) was made in Pichia pastoris strain SMD1163. Under optimal conditions, expression levels of between 8 and 12pmol receptor/mg membrane protein were obtained routinely. In a shake flask, this is equivalent to ca. 0.2mg of receptor per litre of culture. The level of functional receptor produced was essentially independent of the pH of the yeast media. In contrast to this, addition of the hA2aR antagonist theophylline to the culture media caused a twofold increase in receptor expression. A similar effect on dG hA2aR production was also observed when the induction temperature was reduced from 29 to 22 degrees C. In P. pastoris membranes, dG hA2aR had native-like pharmacological properties, binding antagonists with rank potency ZM241385>XAC>theophylline, as well as the agonist NECA. Furthermore, the receptor was made with its large (ca. 120 amino acid) C-terminal domain intact. dG hA2aR was purified to homogeneity in three steps, and its identity confirmed by electrospray tandem mass spectrometry following digestion with trypsin. The secondary structure of the entire receptor is largely (ca. 81%) alpha-helical. Purified dG hA2aR bound [(3)H]ZM241385 in a saturable manner with a B(max) of 18.1+/-0.5 nmol/mg protein, close to the theoretical B(max) value for pure protein (21.3 nmol/mg protein), showing that the receptor had retained its functionality during the purification process. Regular production of pure dG hA2aR in milligram quantities has enabled crystallisation trials to be started.  相似文献   

13.
Some 2-aryl-8-chloro-1,2,4-triazolo[1,5-a]quinoxaline derivatives 2-18, obtained by introducing different substituents on either the 4-amino moiety (acyl or carbamoyl groups) or the 2-phenyl ring (4-OCH3) of previously reported 8-chloro-2-phenyl-1,2,4-triazolo[1,5-a]quinoxalin-4-amine (1), have been synthesized and tested in radioligand binding assays at bovine A1 and A(2A) and at cloned human A1 and A3 adenosine receptors. The rationally designed 8-chloro-2-(4-methoxy-phenyl)-1,2,4-triazolo[1,5-a]quinoxalin-4-acetylamine (14) can be considered one of the most potent and hA3 versus hA1 selective AR antagonists reported till now. The structure-activity relationships of compounds 2-18 are in agreement with those of previously reported 2-aryl-1,2,4-triazolo[4,3-a]quinoxalines (series A) and 2-arylpyrazolo[3,4-c]quinolines (series B), thus suggesting a similar AR binding mode. In fact, the importance for the A3 receptor-ligand interaction of both a strong acidic NH proton donor and a C=O proton acceptor at position-4, able to engage hydrogen-bonding interactions with specific sites on the A3 AR, has been confirmed. Using our recently published hA3 receptor model, to better elucidate our experimental results, we decided to theoretically depict the putative TM binding motif of the herein reported 1,2,4-triazolo[1,5-a]quinoxaline derivatives on human A3 receptor. Structure-activity relationships have been explained analyzing the three-dimensional structure of the antagonist-receptor models obtained by molecular docking simulation.  相似文献   

14.
Abstract: The actions of the neurotransmitter adenosine are mediated by a family of high-affinity, G protein-coupled receptors. We have characterized the gene for the human A2a subtype of adenosine receptor (hA2aR) and determined levels of A2aR mRNA in human brain regions and nonneural tissues. Human genomic Southern blot analysis demonstrates the presence of a single gene encoding the hA2aR located on chromosome 22. Two overlapping cosmids containing the hA2aR gene were isolated from a chromosome 22 library and characterized. Southern blot and sequence analyses demonstrate that the hA2aR gene spans ∼9–10 kb with a single intron interrupting the coding sequence between the regions encoding transmembrane domains III and IV. The sequence of the hA2aR gene diverged from the reported cDNA structure in the 5' untranslated region. This divergence appears to result from an artifact in the construction of the original cDNA library. By northern blot analysis, high expression of the hA2aR gene was identified in the caudate nucleus with low levels of expression in other brain regions. High expression was also seen in immune tissues; lesser A2aR expression was detected in heart and lung. The gene for the A2a subtype of receptor for the neurotransmitter adenosine falls in the class of intron containing G protein-coupled receptor genes. Expression in the basal ganglia is consistent with a role for the hA2aR in motor control. Activation of the A2aR may also regulate immune responses and cardiopulmonary function.  相似文献   

15.
16.
New A(3) adenosine receptor antagonists were synthesized and tested at human adenosine receptor subtypes. An advanced synthetic strategy permitted us to obtain a large amount of the key intermediate 5 that was then submitted to alkylation procedures in order to obtain the derivatives 6-8. These compounds were then functionalised into ureas at the 5-position (compounds 9-11, 18 and 19) to evaluate their affinity and selectivity versus hA(3) adenosine receptor subtype; in particular, compounds 18 and 19 displayed a value of affinity of 4.9 and 1.3 nM, respectively. Starting from 5, the synthetic methodologies employed permitted us to perform a rapid and a convenient divergent synthesis. A further improvement allowed the regioselective preparation of the N(8)-substituted compound 7. This method could be used as an helpful general procedure for the design of novel A(3) adenosine receptor antagonists without the difficulty of separating the N(8)-substituted pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidines from the corresponding N(7)-isomers.  相似文献   

17.
APOBEC3 proteins comprise a multigene family of antiviral cytidine deaminases that are active against human immunodeficiency virus, simian immunodeficiency virus, endogenous retroelements. The Vif protein of lentiviruses binds to specific APOBEC3 proteins, notably A3F and A3G, to induce their degradation by proteasomes. APOBEC3 proteins are of two types, those with a single deaminase domain such as human (h)A3A and hA3C and those with two cytidine deaminase domains (CDD) such as hA3G, hA3F, hA3B and the mouse APOBEC3, mA3. In hA3G, both active sites are required for antiviral function but serve separate functions. CDD2 mediates the C to U deamination of the human immunodeficiency virus type 1 genome, whereas CDD1 binds the viral RNA to allow for virion packaging. Here we analyzed the role of the two domains in additional APOBEC3 family members. We analyzed APOBEC3 proteins in which either the critical glutamic acid residue or the Zn(2+) coordination amino acid residues in the active sites were mutated. The separation of function of the domains is maintained in hA3B and hA3F, but in the mouse protein mA3, the roles of the two domains are reversed. Deamination is mediated by CDD1, whereas encapsidation and dimerization are mediated by CDD2. Antiviral function of each of the APOBEC3 proteins was largely attributable to deaminase activity. Deaminase-independent antiviral activity of the active site mutants was minor. These findings suggest that the two active sites have different functions but that these functions can be interchanged in different APOBEC3 family members.  相似文献   

18.
Amyloid-β peptide (Aβ) concentration in CSF is potentially a diagnostic and therapeutic target for Alzheimer's disease (AD). The purpose of this study was to clarify the elimination mechanism of human Aβ(1-40) [hAβ (1-40)] from CSF. After intracerebroventricular (ICV) administration, [(125) I]hAβ(1-40) was eliminated from the rat CSF with a half-life of 17.3 min. The elimination of [(125) I]hAβ(1-40) was significantly inhibited by human receptor-associated protein (RAP) and the elimination was attenuated in either anti-low-density lipoprotein receptor-related protein (LRP)1 antibody-treated or RAP-deficient mice, suggesting that a member(s) of the low-density lipoprotein receptor gene family is involved in the elimination of hAβ(1-40) from CSF. The amounts of LRP1 and LRP2 proteins were determined by means of liquid chromatography-tandem mass spectrometry, and the LRP1 content in rat choroid plexus was determined to be 3.7 fmol/μg protein, whereas the LRP2 content was below the detection limit (<0.2 fmol/μg protein). Conditionally, immortalized rat choroid plexus epithelial cells exhibited predominant apical-to-basal and apical-to-cell transport of [(125) I]hAβ(1-40). These results indicated that hAβ(1-40) is actively eliminated from CSF and this process is at least partly mediated by LRP1 expressed at choroid plexus epithelial cells, which therefore play a role in determining CSF concentrations of hAβ(1-40).  相似文献   

19.
A new series of N(6)-[(hetero)aryl/(cyclo)alkyl-carbamoyl-methoxy-phenyl]-(2-chloro)-5'-N-ethylcarboxamido-adenosines (24-43) has been synthesised and tested in binding assays at hA(1), hA(2A) and hA(3) adenosine receptors, and in a functional assay at the hA(2B) subtype. The examined compounds displayed high potency in activating A(2B) receptors with good selectivity versus A(2A) subtypes. The introduction of an unsubstituted 4-[(phenylcarbamoyl)-methoxy]-phenyl chain at the N(6) position of 5'-N-ethylcarboxamido-adenosine led us to the recognition of compound 24 as a full agonist displaying the highest efficacy of the series (EC(50) hA(2B)=7.3 nM). These compounds represent the first report about adenosine-related structures capable of activating hA(2B) subtype in the low nanomolar range.  相似文献   

20.

Background

The incorporation of human APOBEC3G (hA3G) into HIV is required for exerting its antiviral activity, therefore the mechanism underlying hA3G virion encapsidation has been investigated extensively. hA3G was shown to form low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. The function of different forms of hA3G in its viral incorporation remains unclear.

Methodology/Principal Findings

In this study, we investigated the subcellular distribution and lipid raft association of hA3G using subcellular fractionation, membrane floatation assay and pulse-chase radiolabeling experiments respectively, and studied the correlation between the ability of hA3G to form the different complex and its viral incorporation. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation.

Conclusions/Significance

Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号