首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Glucans are (1-3)-beta-D-linked polymers of glucose that are produced as fungal cell wall constituents and are also released into the extracellular milieu. Glucans modulate immune function via macrophage participation. The first step in macrophage activation by (1-3)-beta-D-glucans is thought to be the binding of the polymer to specific macrophage receptors. We examined the binding/uptake of a variety of water soluble (1-3)-beta-D-glucans and control polymers with different physicochemical properties to investigate the relationship between polymer structure and receptor binding in the CR3- human promonocytic cell line, U937. We observed that the U937 receptors were specific for (1-->3)-beta-D-glucan binding, since mannan, dextran, or barley glucan did not bind. Scleroglucan exhibited the highest binding affinity with an IC(50)of 23 nM, three orders of magnitude greater than the other (1-->3)-beta-D-glucan polymers examined. The rank order competitive binding affinities for the glucan polymers were scleroglucan>schizophyllan > laminarin > glucan phosphate > glucan sulfate. Scleroglucan also exhibited a triple helical solution structure (nu = 1.82, beta = 0.8). There were two different binding/uptake sites on U937 cells. Glucan phosphate and schizophyllan interacted nonselectively with the two sites. Scleroglucan and glucan sulfate interacted preferentially with one site, while laminarin interacted preferentially with the other site. These data indicate that U937 cells have at least two non-CR3 receptor(s) which specifically interact with (1-->3)-beta-D-glucans and that the triple helical solution conformation, molecular weight and charge of the glucan polymer may be important determinants in receptor ligand interaction.  相似文献   

2.
We have defined two distinct classes of IgG Fc receptors (FcR) on cells of a human monocytic line (U937) by analyzing the direct binding of murine IgG subclasses in medium of low ionic strength. Four lines of evidence support this contention. The binding of aggregated murine IgG2b (AggmIgG2b) to U937 and Daudi cells was enhanced at low ionic strength, whereas monomeric murine IgG2a (mIgG2a) did not bind to Daudi cells and its high affinity binding to U937 cells was unaffected by changes in ionic strength. Double reciprocal inhibition experiments with U937 cells indicated that the binding of both ligands was inhibited 30 to 135 times more efficiently by the homologous ligand than by the heterologous one. That is, the binding of 125I-AggmIgG2b was inhibited 50% by 3.5 micrograms/ml of AggmIgG2b and 100 micrograms/ml of mIgG2a. Similarly, the binding of 125I-mIgG2a was inhibited 50% by 2.5 micrograms/ml of mIgG2a and only 44% by 243 micrograms/ml of AggmIgG2b. A monoclonal antibody of the IgG2b subclass raised against an IgG FcR on K562 cells inhibited binding to U937 cells of AggmIgG2b but not of mIgG2a. Trypsinization of U937 cells abrogated by 32% the binding of mIgG2a but did not affect the binding of AggmIgG2b. Human IgG inhibited binding of both AggmIgG2b and mIgG2a to U937 cells. We propose that the newly recognized FcR that binds AggmIgG2b is the human homologue of the murine macrophage IgG2b/1 FcR (FcRII), and that the previously described 72,000 dalton high-affinity FcR on U937 cells that binds mIgG2a is the human equivalent of the murine macrophage IgG2a FcR (FcRI).  相似文献   

3.
Fibronectin receptors on mononuclear phagocytes are involved in the localization of monocytes at inflammatory sites and in the subsequent expression of macrophage-like phenotypes. In this study, we have investigated the hypothesis that proteolytically derived fragments of fibronectin may interfere with binding of fibronectin to monocytes in the extracellular matrix. We report on the reactivity of U937 cells with an 80-kDa tryptic fragment of fibronectin which contains the cell-binding domain but lacks the gelatin/collagen-binding domain. U937 cells attached to surfaces coated with the 80-kDa fragment as well as with intact fibronectin. Preincubation of the cells with the 80-kDa fragment inhibited attachment to both surfaces while intact fibronectin had little or no inhibitory effect. The Ki for inhibition of attachment (0.5 microM) was consistent with the Kd for binding of the 3H-labeled 80-kDa fragment (0.34 microM) to U937 cells in suspension. There were 4-5 x 10(5) 80-kDa binding sites per cell. The relatively high affinity of the 80-kDa fragment for the monocyte surface permitted the isolation and characterization of fibronectin-binding proteins from U937 cells and peripheral blood monocytes by affinity chromatography. When octylglucoside lysates of lactoperoxidase iodinated cells were applied to 80-kDa-Sepharose columns, a polypeptide complex of 152/125 kDa was eluted with the synthetic peptide GRGDSPC, but not with GRGESP. This complex resolved into a single diffuse band of 144 kDa upon reduction. Binding of the protein complex to the affinity column required divalent cations. The complex bound to wheat germ agglutinin and could be specifically eluted by N-acetylglucosamine. Similar cell-surface proteins were isolated from peripheral blood monocytes.  相似文献   

4.
We have utilized monoclonal antibodies against the two IgG Fc receptors (p40 and p72) of U937 cells to stimulate the release of superoxide. The monoclonal antibody (mAb) specific for p40 (IV3) has been described elsewhere. A murine IgG1 mAb specific for the high affinity p72 Fc receptor (designated mAb FcR32 or simply mAb 32) bound to the same p72 precipitated by Sepharose-human IgG as shown by preclearing experiments and by identical isoelectric focussing patterns. Binding of mAb 32 to p72 was independent of the Fc region of the antibody since Fab' fragments of mAb 32 affinity adsorbed p72. The binding of both mAb 32 and human IgG1 to the intact U937 cell was not reciprocally inhibitory, indicating that mAb 32 does not interfere with the ligand binding site of p72. mAb 32 bound to human monocytes, U937, and HL60 cells, but not to granulocytes or lymphocytes. U937 cells cultured in gamma-interferon and 1,25-dihydroxycholecalciferol generated superoxide when incubated with mAb 32 or IV3 followed by cross-linking with F(ab')2 anti-murine Ig. Incubation with mAb 32 or IV3 alone or with 3 of 5 other anti-U937 mAbs cross-linked with anti-murine Ig did not result in superoxide generation. Immune complex-mediated superoxide production was inhibited 80% by IgG, but not by mAb 32 or IV3.  相似文献   

5.
beta-Glucan receptors are present on mammalian phagocytic cells and provide an important physiologic mechanism for opsonin-independent clearance of yeasts and fungi. To prepare an immunologic probe to human monocyte beta-glucan receptors, an approach was taken that focused on the ligand specificity of the receptors as expressed by an anti-Id. The algal beta-glucan laminarin was chemically coupled to protein carriers to prepare an immunogenic beta-glucan. Three mouse IgG2a mAb were raised against laminarin, and one, mAb OEA10, exhibited specificity for the soluble unit ligand yeast heptaglucoside and the ligands present on zymosan and glucan particles that are recognized by monocyte beta-glucan receptors. These findings prompted usage of mAb OEA10 as immunogen for the preparation of an anti-Id. The resulting rabbit antiserum was subjected to sequential immunoaffinity chromatography to purify anti-idiotypic antibodies. The final product contained only IgG by SDS-PAGE and was shown to be specific by its selectively blocking binding of 125I-mAb OEA10 to laminarin. Pretreatment of adherent monocytes with 0.4 micrograms/ml of the anti-Id reduced the numbers of monocytes ingesting zymosan and glucan particles by 64 and 43%, respectively, whereas ingestion of IgG-coated SRBC was unaffected by as much as 16 micrograms/ml of the anti-Id. Incubation of adherent monocytes with increasing amounts of 125I-anti-Id in the absence and presence of 40-fold molar excess unlabeled anti-Id revealed dose-dependent specific binding, which approached plateau levels with 1 microgram/ml of labeled anti-Id. Thus, the anti-Id binds to monocytes and displays functional characteristics of soluble beta-glucan ligands, indicating that some of the anti-idiotypic antibodies recognize epitopes within monocyte beta-glucan receptors.  相似文献   

6.
Endoglin modulates cellular responses to TGF-beta 1   总被引:18,自引:0,他引:18       下载免费PDF全文
《The Journal of cell biology》1996,133(5):1109-1121
Endoglin is a homodimeric membrane glycoprotein which can bind the beta 1 and beta 3 isoforms of transforming growth factor-beta (TGF-beta). We reported previously that endoglin is upregulated during monocyte differentiation. We have now observed that TGF-beta itself can stimulate the expression of endoglin in cultured human monocytes and in the U-937 monocytic line. To study the functional role of endoglin, stable transfectants of U-937 cells were generated which overexpress L- or S- endoglin isoforms, differing in their cytoplasmic domain. Inhibition of cellular proliferation and downregulation of c-myc mRNA which are normally induced by TGF-beta 1 in U-937 cells were totally abrogated in L-endoglin transfectants and much reduced in the S- endoglin transfectants. Inhibition of proliferation by TGF-beta 2 was not altered in the transfectants, in agreement with the isoform specificity of endoglin. Additional responses of U-937 cells to TGF- beta 1, including stimulation of fibronectin synthesis, cellular adhesion, platelet/endothelial cell adhesion molecule 1 (PECAM-1) phosphorylation, and homotypic aggregation were also inhibited in the endoglin transfectants. However, modulation of integrin and PECAM-1 levels and stimulation of mRNA levels for TGF-beta 1 and its receptors R-I, R-II, and betaglycan occurred normally in the endoglin transfectants. No changes in total ligand binding were observed in L- endoglin transfectants relative to mock, while a 1.5-fold increase was seen in S-endoglin transfectants. The degradation rate of the ligand was the same in all transfectants. Elucidating the mechanism by which endoglin modulates several cellular responses to TGF-beta 1 without interfering with ligand binding or degradation should increase our understanding of the complex pathways which mediate the effects of this factor.  相似文献   

7.
Initiation of the coagulation protease cascade as it assembles on cell surfaces requires limited proteolytic activation of the zymogen factor X. Not previously suspected to be the ligand of an organizing receptor on cell surfaces, we now describe that factor X specifically associates with cells of monocyte lineage and we identify the high affinity receptor for this zymogen. Following stimulation with ADP (10 microM), or with the ionophore ionomycin (1 microM), isolated human monocytes bind 125I-factor X in a saturable fashion with a dissociation constant (Kd) of 21.8-44.9 nM. Equilibrium binding analyses indicate that the reaction is optimal at room temperature, requires Ca2+ ions, and saturates at 128,500 +/- 21,300 molecules of 125I-factor X specifically associated with the cell surface. Molar excess of unlabeled factor X inhibits and reverses the binding, whereas the homologous gamma-carboxylated coagulation proteins factors II, VII, IX, IXa, and Xa are without effect. Similarly, chelation of divalent ions immediately dissociates bound 125I-factor X. The monoblast cell line U 937 and the monocytic cell line THP-1 when stimulated with ADP or ionomycin, bind 125I-factor X with characteristics similar to monocytes. Receptor identity was explored using antibodies to the leukocyte adhesive receptors Mac-1, LFA-1, and p150.95. Monoclonal antibodies specific for the alpha subunit of Mac-1 (M 1/70, LM 2/1) or for the common beta subunit (TS 1/18, 60.3) bound equally to resting and ADP- or ionomycin-stimulated cells and also completely blocked the binding of 125I-factor X to stimulated monocytes, U 937, or THP-1 cells. To distinguish between modulatory effects of the monoclonal antibodies and direct spatial hindrance binding of 125I-factor X to Mac-1 was analyzed directly. OKM10 anti-alpha subunit of Mac-1 monoclonal antibody immunoprecipitated 125I-factor X chemically cross-linked to its receptor on stimulated cells. In addition, the complement protein fragment C3bi, which is a recognized ligand for Mac-1, competitively inhibited the association of 125I-factor X. These findings indicate that human blood monocytes and less differentiated cells of this lineage possess an inducible receptor specific for factor X; and also support the conclusion that the heterodimeric leukocyte adhesive receptor Mac-1 functions as the specific receptor structure. We suggest that the novel properties of this receptor may be of importance in the organization and regulation of certain coagulation protease cascades on the monocyte surface.  相似文献   

8.
Monocyte adhesion to endothelium represents the first step in the emigration of this leukocyte from blood to tissue during such pathologic and physiologic processes as atherosclerotic plaque development, wound healing, and inflammation. We have examined the role of carbohydrate moieties in the binding of mononuclear cells to endothelium in vitro. Wheat germ agglutinin (WGA) completely inhibited binding of the human monocytic cell line U937 to pig or human endothelial cells (EC). The inhibition was abolished by the presence of N-acetyl glucosamine, a preferred ligand for WGA. This sugar itself, however, had no effect on monocytic cell binding to EC, suggesting that WGA is inhibiting the cell-cell interaction by binding to a distinct sugar moiety. We tested a series of simple and phosphorylated sugars for the ability to inhibit U937 cell binding to EC. Two phosphorylated disaccharides, lactose-1-phosphate and maltose-1-phosphate, but not 14 other sugars, caused complete suppression of monocyte adhesion to EC. Among the inactive sugars were mannose-6-phosphate and fructose-1-phosphate, which have been shown by others to markedly suppress lymphocyte adhesion to EC. A nonionic detergent, n-octyl-beta-D-glucopyranoside (octyl glucoside), which contains a sugar group as a hydrophilic moiety, also inhibited U937 cell or human monocyte binding to human or porcine EC. The inhibition was observed at a nontoxic concentration of octyl glucoside and appeared to be due to an effect on the monocytic cell rather than the EC. When suboptimal doses of WGA and octyl glucoside were added in combination to the U937 cell-EC adhesion assay, the level of inhibition was greatly reduced when compared with either of the inhibitors alone, suggesting an interaction between these two blocking agents. Lactose-1-phosphate, but not octyl glucoside or WGA, blocked neutrophil adhesion to EC. In summary, our results indicate that specific cell surface carbohydrate groups are required for the adhesion of monocytes to the endothelium.  相似文献   

9.
Dectin‐1, a specific pattern recognition receptor for β‐1,3/β‐1,6‐glucans, is expressed mainly on phagocytes. Human dectin‐1 (hDectin‐1) and mouse dectin‐1 (mDectin‐1) were separately expressed on HEK293 cell surfaces for examination of the binding abilities of a synthetic particulate β‐glucan (pβG), a product extracted from Saccharomyces cerevisiae, in this study. The binding of zymosan‐FITC to hDectin‐1 and mDectin‐1 was inhibited by pβG at similar concentrations for 50% inhibition of binding (IC50). However, the kinetics of the time course and dose response to zymosan stimulation observed for U937 and J774A.1 differed. Superoxide anion production was increased in U937 but reduced in J774A.1 when cells were treated with pβG, zymosan, or laminarin, whereas ovalbumin endocytosis was enhanced in U937 and J774A.1 treated either with pβG, zymosan, laminarin, or barley‐glucan. These results indicate that the binding affinity of pβG to hDectin‐1 is similar to the binding affinity to mDectin‐1, and that stimulation by pβG as well as various forms of β‐1,3‐glucans on U937 and J774A.1 resulted in upregulation of cell activity and ovalbumin endocytosis. Additionally, other coreceptors on U937 and J774A.1 may be involved in directing different responses to superoxide anion production in these two types of cells. These results will likely contribute to further investigations on identifying the biological forms of β‐glucans capable of binding its specific receptor as the effective immunomodulators. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

10.
For several years it is known that beta-adrenergic receptor agonists have anti-inflammatory effects. However, little is known about the role of beta-adrenergic receptors on macrophages in the modulation of cytokine production by beta-agonists during inflammation. In this study, the presence of beta-receptors on PMA-differentiated U937 human macrophages, and the participation of these receptors in the modulation of LPS-mediated cytokine production by beta-agonists was investigated. Total beta-receptor expression on undifferentiated (monocyte) and PMA-differentiated U937 cells was established using receptor binding studies on membrane fractions with a radio ligand. The expression of beta-receptors proved to be significantly lower on monocytes than on macrophages, additionally a predominant expression of beta 2-receptors was found. Production of the cytokines TNF-alpha, IL-6, and IL-10 by LPS-stimulated differentiated U937 cells was measured in time. Peak concentrations for TNF-alpha, IL-6 and IL-10 occurred at 3, 12 and 9 hrs, respectively. When differentiated U937 cells were incubated with both LPS and the beta-agonist clenbuterol the production of TNF-alpha and IL-6 was significantly reduced. However the production of IL-10 was increased. To study the mechanism of modulation of cytokine production in more detail, U937 macrophages were incubated with LPS/clenbuterol in combination with selective beta 1- and beta 2-antagonists. These results indicated that the beta 2- and not the beta 1-receptor is involved in the anti-inflammatory activity of clenbuterol.  相似文献   

11.
Characteristics of the beta-glucan receptor of murine macrophages   总被引:6,自引:0,他引:6  
Phagocytosis of heat-killed yeast (HK-yeast), zymosan, and glucan particles by thioglycollate-elicited mouse peritoneal macrophages (Tg-macrophages) was inhibited by soluble glucan polymers/oligomers. The inhibitory capacity of soluble glucans decreased steeply with the decrease in the degree of polymerization (DPn); i.e., the concentration at which 50% inhibition of phagocytosis was attained was 0.23 microgram/ml for glucan 1 (DPn 24.8), 0.8 microgram/ml for glucan 2 (DPn 21.9), and greater than 40 micrograms/ml for glucan 3 (DPn 13.8). The glucan polymers were obtained by partial hydrolysis of glucan particles with formic acid (90%, 95 degrees C, 20 min) and fractionation according to solubility in ethanol water mixtures. A short preincubation (5 min, 4 or 37 degrees C) of Tg-macrophages with glucan 1 led to a subsequent inhibition of HK-yeast phagocytosis. Recovery of the phagocytic function was slow (27% in 3 h; 68% in 5 h) and required protein synthesis. beta-Glucan receptor expression was also suppressed by dexamethasone treatment. Mannan exerted at high concentrations (5 mg/ml) a partial inhibitory activity which was totally abrogated by beta-glucanase treatment. Treatment of macrophages with glucan together with mannan did not enhance the inhibitory capacity of glucan beyond the component abrogated by enzyme treatment. Contribution of local opsonization of HK-yeast to the phagocytic response (involvement of complement receptors) was indirectly negated; (a) glucan 1 which inhibits HK-yeast phagocytosis by up to 95% is not an activator of complement and therefore could not compete for the opsonizing proteins; (b) cycloheximide treatment in itself inhibited only partially HK-yeast phagocytosis whereas it inhibited the reexpression of the glucan receptors; (c) glucan 1 did not affect the phagocytosis of serum opsonized HK-yeast. Thus under the experimental conditions described, phagocytosis of HK-yeast by murine macrophages is mediated by and large by the beta-glucan receptors, while the mannose receptors and complement receptors do not contribute to the process.  相似文献   

12.
Annexin 1 (ANX1), a calcium-binding protein, participates in the regulation of early inflammatory responses. Whereas some of its effects depend on intracellular interactions, a growing number of observations indicate that ANX1 may also act via autocrine/paracrine functions following externalization to the outer side of the plasma membrane. We studied the effects of ANX1 on leukocyte adhesion to endothelial cells using as a model system the monocytic cell line U937 and human bone marrow microvascular endothelial cells. Exogenous rANX1, as well as endogenous ANX1 externalized by U937 differentiated in vitro, inhibited monocyte firm adhesion to vascular endothelium. Both binding of ANX1 to U937 cells and ANX1-mediated inhibition of cell adhesion involved the short N-terminal domain of the ANX1 molecule. Under experimental conditions in which ANX1 inhibited U937 adhesion to human bone marrow microvascular endothelial cells, this protein specifically colocalized with the alpha 4 integrin, and a direct interaction between ANX1 and the alpha 4 integrin could be documented by immunoprecipitation experiments. Moreover, ANX1 competed with the endothelial integrin counterreceptor, VCAM-1, for binding to alpha 4 integrin. These results indicate that ANX1 plays an important physiological role in modulating monocyte firm adhesion to the endothelium.  相似文献   

13.
14.
Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.  相似文献   

15.
We demonstrate that indolactam V, a non-phorbol protein kinase C activator, promotes U937 cell attachment to fibronectin, type IV collagen and laminin. In the absence of indolactam V, 2-4% of U937 cells attach to all test substrates, however, in the presence of 100 nM indolactam V, 25, 16 and 11% of U937 cells attach to fibronectin, type IV collagen and laminin, respectively. When added concomitantly, 90 microM H-7, a protein kinase C inhibitor, reduces indolactam V-induced U937 cell adhesion to fibronectin by 91%. Monoclonal antibodies directed against both the beta1 and alpha 5 integrin subunits inhibit indolactam V-induced U937 cell adhesion to fibronectin by 62 and 52%, respectively. Indolactam V also promotes homotypic aggregation in U937 cells, which is blocked with either anti-ICAM or anti-LFA-1 antibodies. In addition, indolactam V promotes U937 cell secretion of a 92 kDa gelatinase as demonstrated by zymography. In the presence of low levels of morphine (10 nM-1.0 microM), the U937 cell attachment to matrix proteins was not significantly affected. However, in the presence of 10 microM morphine, the indolactam V treated cells exhibit a 71-74% reduction in cell adhesion to the matrix proteins. Further, 10 microM morphine also blocks indolactam V-induced homotypic aggregation and gelatinase secretion. The inhibitory effect of morphine on cell-matrix adhesion and gelatinase secretion was not inhibited by the opiate receptor antagonist naloxone (1 microM). While 10 microM naloxone did partially counteract the effect of 10 microM morphine on U937 cell attachment, this effect was likely non-specific since 10 microM naloxone alone increased cell adhesion. Supporting this conclusion, PCR analysis revealed that U937 cells do not express the mu high affinity morphine receptor. Also, indolactam V did not induce mu receptor expression, suggesting that morphine acts on U937 cells in a non-specific fashion.  相似文献   

16.
The effect of the glucocorticoid inducible protein annexin 1 (ANXA1) on the process of monocytic cell migration was studied using transfected U937 cells expressing variable protein levels. An antisense (AS) (36.4AS; approximately 50% less ANXA1) and a sense (S) clone (15S; overexpressing the bioactive 24-kDa fragment) together with the empty plasmid CMV clone were obtained and compared with wild-type U937 cells in various models of cell migration in vitro and in vivo. 15S-transfected U937 cells displayed a reduced (50%) degree of trans-endothelial migration in response to stromal cell-derived factor-1alpha (CXC chemokine ligand 12 (CXCL12)). In addition, the inhibitory role of endogenous ANXA1 on U937 cell migration in vitro was confirmed by the potentiating effect of a neutralizing anti-ANXA1 serum. Importantly, overexpression of ANXA1 in clone 15S inhibited the extent of cell migration into rheumatoid synovial grafts transplanted into SCID mice. ANXA1 inhibitory effects were not due to modifications in adhesion molecule or CXCL12 receptor (CXCR4) expression as shown by the similar amounts of surface molecules found in transfected and wild-type U937 cells. Likewise, an equal chemotactic response to CXCL12 in vitro excluded an intrinsic defect in cell motility in clones 15S and 36.4AS. These data strongly support the notion that ANXA1 critically interferes with a leukocyte endothelial step essential for U937 cell, and possibly monocyte, transmigration both in vitro and in vivo.  相似文献   

17.
We studied Fc receptor and C3b receptor (CR1) function on U937 cells, a human monocyte cell line. C3b was incorporated into stable soluble heat aggregates of 125I-IgM (A-IgM) and 125I-IgG (A-IgG) by using functionally pure classical pathway components. C3b incorporation was verified by the ability of aggregates to bind to human red cells and by cosedimentation of 125I and 131I during ultracentrifugation. Cell uptake and degradation of A-IgG X C3b was increased up to twofold compared with A-IgG not containing C3b molecules. However, A-IgG X C3b bound to CR1 after Fc receptors were blocked with nonradiolabeled A-IgG were also not endocytosed and catabolized. Moreover, A-IgM X C3b was bound but not degraded by U937 cells. As expected, uptake of A-IgM without C3b was negligible. CR1-mediated binding of A-IgM X C3b was specifically inhibited both by a murine monoclonal antibody against the human CR1 that blocks C3b binding and by C3b oligomers generated by trypsin activation of C3, but not by monoclonal antibodies against the iC3b receptor (CR3). We conclude that CR1 on U937 cells cause increased binding of A-IgG, and this increased binding leads to increased Fc-mediated endocytosis and catabolism of model immune complexes. However, binding of soluble ligands by CR1 alone, even when binding is multivalent, does not lead to endocytosis and degradation of soluble ligands bearing C3b.  相似文献   

18.
19.
Macrophage receptors for the Fc portion of IgG play an important role in host defense, inflammation, and the pathophysiology of autoimmune disorders. We studied one important function of Fc gamma receptors--the ability to bind IgG ligand. Direct binding experiments analyzed by nonlinear regression were consistent with monomeric and trimeric IgG binding to a single class of receptors. Indirect binding experiments were also consistent with this interpretation and revealed that both IgG ligands completely inhibited the binding of the other. In addition, we used an anti-Fc gamma RII monoclonal antibody known to compete for the Fc gamma RII ligand binding site and known to inhibit IgG trimer binding to other cells. At concentrations of antibody which saturated all Fc gamma RII sites, no inhibition of IgG trimer binding to U-937 was observed. This was evident despite the observation that the numbers of Fc gamma RI and Fc gamma RII, determined by equilibrium binding of monomeric IgG and anti-Fc gamma RII antibody, respectively, were similar on U-937. Monoclonal antibodies were used to compare the expression and modulation of Fc gamma receptor proteins with their ability to bind monomeric and trimeric IgG ligands. Dexamethasone and gamma-interferon regulated U-937 Fc gamma RI protein expression and IgG ligand binding to a similar degree. In contrast, the expression of Fc gamma RII was not altered by dexamethasone. Interferon-gamma primarily stimulated Fc gamma RI, as determined both by reactivity with monoclonal antibody (227 +/- 26%) and by monomeric IgG ligand binding (350 +/- 151%). In addition, dexamethasone inhibited by 33% the gamma-interferon effect on Fc gamma RI protein and by 56% the effect on Fc gamma RI binding of monomeric IgG. Preincubation of U-937 with anti-Fc gamma RII antibody did not alter the effect of dexamethasone or gamma-interferon on IgG trimer binding. These data indicate that on U-937 cells Fc gamma RII does not function in the recognition of small molecular weight immune complexes and that Fc gamma RI is the Fc gamma receptor responsible for the binding of both monomeric and trimeric human IgG. Furthermore, Fc gamma RI is the major Fc gamma receptor on U-937 that is modulated by both gamma-interferon and glucocorticoids.  相似文献   

20.
p72 high affinity receptors (Fc gamma RI) for the Fc portion of IgG molecules on human peripheral blood monocytes mediate a variety of beneficial functions, but also have deleterious effects in certain clinical situations. In the present study, the photosensitizing porphyrins hematoporphyrin derivative and dihematoporphyrin ether (DHE), which are known to preferentially affect the cell membrane, were found to significantly inhibit binding of mouse IgG2a antibodies to the ligand binding site of Fc gamma RI on human peripheral blood monocytes and the U937 human monocytic cell line. Fc gamma RI receptors could be identified with a monoclonal antibody which recognizes an epitope distinct from the ligand binding site, indicating that photosensitization induced a structural alteration rather than loss of the receptor molecule from the cell surface. The effect of DHE and light appeared to be highly specific, since binding of monoclonal antibodies to other surface structures was not decreased. DHE plus light-induced modulation of Fc gamma RI was found to be mediated by superoxide anions, since addition of a mimic of superoxide dismutase restored both binding of mouse IgG2a to Fc gamma RI as well as human monocyte accessory cell function. These studies identify porphyrin photosensitization as a unique mechanism by which to selectively down-regulate Fc gamma RI-mediated functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号