首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Placental development initially occurs in a low-oxygen (O2) or hypoxic environment. In this report we show that two hypoxia-inducible factors (HIFs), HIF1alpha and HIF2alpha, are essential for determining murine placental cell fates. HIF is a heterodimer composed of HIFalpha and HIFbeta (ARNT) subunits. Placentas from Arnt-/- and Hif1alpha-/- Hif2alpha-/- embryos exhibit defective placental vascularization and aberrant cell fate adoption. HIF regulation of Mash2 promotes spongiotrophoblast differentiation, a prerequisite for trophoblast giant cell differentiation. In the absence of Arnt or Hifalpha, trophoblast stem cells fail to generate these cell types and become labyrinthine trophoblasts instead. Therefore, HIF mediates placental morphogenesis, angiogenesis, and cell fate decisions, demonstrating that O2 tension is a critical regulator of trophoblast lineage determination. This novel genetic approach provides new insights into the role of O2 tension in the development of life-threatening pregnancy-related diseases such as preeclampsia.  相似文献   

3.
Defects in placental development lead to pregnancies at risk for miscarriage and intrauterine growth retardation and are associated with preeclampsia, a leading cause of maternal death and premature birth. In preeclampsia, impaired placental formation has been associated with alterations in a specific trophoblast lineage, the invasive trophoblast cells. In this study, an RT-PCR Trophoblast Gene Expression Profile previously developed by our laboratory was utilized to examine the lineage-specific gene expression of the rat Rcho-1 trophoblast cell line. Our results demonstrated that Rcho-1 cells represent an isolated, trophoblast population committed to the giant cell lineage. RT-PCR analysis revealed that undifferentiated Rcho-1 cells expressed trophoblast stem cell marker, Id2, and trophoblast giant cell markers. On differentiation, Rcho-1 cells downregulated Id2 and upregulated Csh1, a marker of the trophoblast giant cell lineage. Neither undifferentiated nor differentiated Rcho-1 cells expressed spongiotrophoblast marker Tpbpa or labyrinthine markers Esx1 and Tec. Differentiating Rcho-1 cells in hypoxia did not alter the expression of lineage-specific markers; however, hypoxia did inhibit the downregulation of the trophoblast stem cell marker Id2. Differentiation in hypoxia also blocked the induction of CSH1 protein. In addition, hypoxia inhibited stress fiber formation and abolished the induction of palladin, a protein associated with stress fiber formation and focal adhesions. Thus, Rcho-1 cells can be maintained as a proliferative, lineage-specific cell line that is committed to the trophoblast giant cell lineage on differentiation in both normoxic and hypoxic conditions; however, hypoxia does inhibit aspects of trophoblast giant cell differentiation at the molecular, morphological, and functional levels.  相似文献   

4.
5.
The nonphysiological placental oxidative environment has been implicated in many complications during human pregnancy. Oxygen tension can influence a broad spectrum of molecular changes leading to alterations in trophoblast cell lineage development. In this study, we report that mouse wild-type trophoblast stem cells (TSCs) react to low oxygen (3%) with an enhanced differentiation into the giant cell pathway, indicated by a downregulation of the early stem cell markers Eomes and Cdx2 as well as by a significant upregulation of Tfap2c and the differentiation markers Tpbpa and Prl3d1. Here we demonstrated that connexin 31/GJB3-deficient TSCs failed to stabilize HIF-1A under low oxygen, resulting in nonresponsiveness of different marker genes, such as Cdx2 and Eomes and Tfap2c and Tpbpa. Moreover, connexin 31-deficient TSCs revealed a shift in giant cell differentiation from Prl3d1 expressing parietal giant cells to Ctsq, Prl3b1, and Prl2c2-positive giant cells, probably sinusoidal and canal lining trophoblast giant cells. Thus, loss of connexin 31 led to different giant cell subtypes which bypass the progenitor regulators Tfap2c and Tpbpa under low oxygen conditions.  相似文献   

6.
7.
8.
9.
10.
11.
Suppressor of cytokine signaling 3 (SOCS3) binds cytokine receptors and thereby suppresses cytokine signaling. Deletion of SOCS3 causes an embryonic lethality that is rescued by a tetraploid rescue approach, demonstrating an essential role in placental development and a non-essential role in embryo development. Rescued SOCS3-deficient mice show a perinatal lethality with cardiac hypertrophy. SOCS3-deficient placentas have reduced spongiotrophoblasts and increased trophoblast secondary giant cells. Enforced expression of SOCS3 in a trophoblast stem cell line (Rcho-1) suppresses giant cell differentiation. Conversely, SOCS3-deficient trophoblast stem cells differentiate more readily to giant cells in culture, demonstrating that SOCS3 negatively regulates trophoblast giant cell differentiation. Leukemia inhibitory factor (LIF) promotes giant cell differentiation in vitro, and LIF receptor (LIFR) deficiency results in loss of giant cell differentiation in vivo. Finally, LIFR deficiency rescues the SOCS3-deficient placental defect and embryonic lethality. The results establish SOCS3 as an essential regulator of LIFR signaling in trophoblast differentiation.  相似文献   

12.
13.
14.
Placental hypoxia has been implicated in pregnancy pathologies, including fetal growth restriction and preeclampsia; however, the mechanism by which the trophoblast cell responds to hypoxia has not been adequately explored. Glucose transport, a process crucial to fetoplacental growth, is upregulated by hypoxia in a number of cell types. We investigated the effects of hypoxia on the regulation of trophoblast glucose transporter (GLUT) expression and activity in BeWo choriocarcinoma cells, a trophoblast cell model, and human placental villous tissue explants. GLUT1 expression in BeWo cells was upregulated by the hypoxia-inducing chemical agents desferroxamine and cobalt chloride. Reductions in oxygen tension resulted in dose-dependent increases in GLUT1 and GLUT3 expression. Exposure of cells to hypoxic conditions also resulted in an increase in transepithelial glucose transport. A role for hypoxia-inducible factor (HIF)-1 was suggested by the increase in HIF-1 as a result of hypoxia and by the increase in GLUT1 expression following treatment of BeWo with MG-132, a proteasomal inhibitor that increases HIF-1 levels. The function of HIF-1 was confirmed in experiments where the hypoxic upregulation of GLUT1 and GLUT3 was inhibited by antisense HIF-1. In contrast to BeWo cells, hypoxia produced minimal increases in GLUT1 expression in explants; however, treatment with MG-132 did upregulate syncytial basal membrane GLUT1. Our results show that GLUTs are upregulated by hypoxia via a HIF-1-mediated pathway in trophoblast cells and suggest that the GLUT response to hypoxia in vivo will be determined not only by low oxygen tension but also by other factors that modulate HIF-1 levels. glucose transporter 1; glucose transporter 3; glucose transport  相似文献   

15.
16.
The relative expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) is an important determinant in trophoblast invasion of the uterus and tumor invasion and metastasis. Our previous studies have shown that low oxygen levels increase the in vitro invasiveness of trophoblast and tumor cells. The present study examined whether changes in oxygen levels affect TIMP and MMP expression by cultured trophoblast and breast cancer cells. Reverse zymographic analysis demonstrated reduced TIMP-1 protein secretion by HTR-8/SVneo trophoblast cells as well as MDA-MB-231 and MCF-7 breast carcinoma cells cultured in 1% vs 20% oxygen for 24 h. While gelatin zymography revealed no changes in the levels of MMP-9 secreted by HTR-8/SVneo trophoblasts cultured under various oxygen concentrations for 24 h, human MDA-MB-231 breast carcinoma cells displayed increased MMP-9 secretion and human MCF-7 breast cancer cells exhibited reduced secretion of this enzyme when cultured under similar conditions. In contrast, MMP-2 levels remained unchanged in all cultures incubated under similar conditions. Western blot analysis of MMP-9 protein in cell extracts confirmed the results of zymography. To assess the contribution of enhanced MMP activity to hypoxia-induced invasion, the effect of an MMP inhibitor (llomastat) on the ability of MDA-MB-231 cells to penetrate reconstituted extracellular matrix (Matrigel) was examined. Results showed that MMP inhibition significantly decreased the hypoxic upregulation of invasion by these cells. These findings indicate that the increased cellular invasiveness observed under reduced oxygen conditions may be due in part to a shift in the balance between MMPs and their inhibitors favoring increased MMP activity.  相似文献   

17.
Diploid mouse embryos containing only maternal DNA (parthenotes) fail, in part, because the inner cell mass does not induce the trophoblast to grow. In this study, we asked whether any of the defects in parthenotes may arise from alterations in trophoblast function. We examined the expression of genes important for normal trophoblast function and found several trophoblast genes that were expressed at normal levels in the primary trophoblast cells of parthenotes: E-cadherin, a cell adhesion molecule, was expressed normally in both the ICM and trophectoderm of parthenogenetic blastocysts and blastocyst outgrowths; the gene for Hxt, a basic helix-loop-helix factor that regulates trophoblast development, was expressed in both zygotic and parthenogenetic giant cells; placental lactogen-1, a hormone that is normally secreted by trophoblast giant cells, was expressed in most of both parthenogenetic and normal trophoblast cells; and the 92 kDa matrix metalloproteinase, gelatinase B, also known as MMP-9, was secreted at equivalent levels by both zygotic and parthenogenetic blastocyst outgrowths. However, once the outgrowths had developed, a subpopulation of trophoblast cells in parthenogenetic embryos had decreased DNA replication and significantly fewer nucleoli per nucleus than did zygotic embryos. Moreover, the parthenogenetic trophoblast cells growing out from blastocysts had a decreased viability in culture. These data suggest that, although parthenogenetic embryos are able to initiate primary trophoblast differentiation, the stability and continued differentiation of trophoblast giant cells may be abnormal. Our data support the hypothesis that the deficiency of secondary trophoblast giant cells may contribute to the decline of parthenogenetic embryos and suggest that the factors controlling this subset of trophoblast are distinct from those for primary trophoblast. Dev Genet 20:1–10, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
CNN3 is an ubiquitously expressed F-actin binding protein, shown to regulate trophoblast fusion and hence seems to play a role in the placentation process. In this study we demonstrate that CNN3 levels are upregulated under low oxygen conditions in the trophoblast cell line BeWo. Since hypoxia is discussed to be a pro-migratory stimulus for placental cells, we examined if CNN3 is involved in trophoblast invasion. Indeed, when performing a matrigel invasion assay we were able to show that CNN3 promotes BeWo cell invasion. Moreover, CNN3 activates the MAPKs ERK1/2 and p38 in trophoblast cells and interestingly, both kinases are involved in BeWo invasion. However, when we repeated the experiments under hypoxic conditions, CNN3 did neither promote cell invasion nor MAPK activation. These results indicate that CNN3 promotes invasive processes by the stimulation of ERK1/2 and/or p38 under normoxic conditions in BeWo cells, but seems to have different functions at low oxygen levels. We further speculated that CNN3 expression might be altered in human placentas derived from pregnancies complicated by IUGR and preeclampsia, since these placental disorders have been described to go along with impaired trophoblast invasion. Our studies show that, at least in our set of placenta samples, CNN3 expression is neither deregulated in IUGR nor in preeclampsia. In summary, we identified CNN3 as a new pro-invasive protein in trophoblast cells that is induced under low oxygen conditions.  相似文献   

19.
Normal human fetal development requires an adequate supply of thyroid hormone from conception. Until about 16 wk gestation this is supplied entirely by placental transfer of maternal hormone. Subsequently, the fetal thyroid synthesizes thyroid hormones, requiring a supply of maternal iodide. Trophoblast iodide transfer is mediated by the apical sodium iodide symporter (NIS). Placental oxygen levels are low in early pregnancy (~1%), rising with placental vascularisation to a plateau of ~8% at about 16 wk. Although the impact of these changing oxygen levels on placental implantation is well recognized, effects on trophoblast materno-fetal exchange are less understood. We investigated expression of the NIS regulator hCG, NIS mRNA expression, and I(125) uptake in choriocarcinoma BeWo cells (a model of the trophoblast) cultured in 1 and 8% oxygen and in room air (21% oxygen). Expression of NIS and hCG mRNA and protein was low at 1% oxygen but rose significantly at 8 and at 21%. This was reflected in significant increases in I(125) uptake. Desferrioxamine, an iron chelator and hypoxia mimic, decreased NIS and hCG expression and I(125) uptake in BeWo cells. NIS expression and I(125) uptake in cells grown at 1% oxygen were not increased by addition of hCG (2,500 IU/l). We infer that placental NIS mRNA and protein expression are regulated by oxygen, rising with vascularization of the placenta in the late first trimester, a time when fetal iodide requirements are increasing.  相似文献   

20.
Cells from the labyrinth region of the developing rat chorioallantoic placenta were able to differentiate in vitro into cells capable of producing placental lactogen. Progesterone selectively inhibited placental lactogen production by labyrinth cell cultures undergoing differentiation but had no apparent effect on lactogen production by mature trophoblast giant cells. The measurement of placental lactogen production is a useful method for monitoring the functional differentiation of rat trophoblast cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号