共查询到5条相似文献,搜索用时 0 毫秒
1.
A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening 总被引:1,自引:0,他引:1
Lin Z Hong Y Yin M Li C Zhang K Grierson D 《The Plant journal : for cell and molecular biology》2008,55(2):301-310
Ethylene is required for climacteric fruit ripening. Inhibition of ethylene biosynthesis genes, 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase, prevents or delays ripening, but it is not known how these genes are modulated during normal development. LeHB-1, a previously uncharacterized tomato homeobox protein, was shown by gel retardation assay to interact with the promoter of LeACO1 , an ACC oxidase gene expressed during ripening. Inhibition of LeHB-1 mRNA accumulation in tomato fruit, using virus-induced gene silencing, greatly reduced LeACO1 mRNA levels, and inhibited ripening. Conversely, ectopic overexpression of LeHB-1 by viral delivery to developing flowers elsewhere on injected plants triggered altered floral organ morphology, including production of multiple flowers within one sepal whorl, fusion of sepals and petals, and conversion of sepals into carpel-like structures that grew into fruits and ripened. Our findings suggest that LeHB-1 is not only involved in the control of ripening but also plays a critical role in floral organogenesis. 相似文献
2.
《Cell cycle (Georgetown, Tex.)》2013,12(24):4626-4632
The DNase domain-containing protein TATDN1 is a conserved nuclease in both prokaryotes and eukaryotes. It was previously implicated to play a role in apoptotic DNA fragmentation in yeast and C. elegans. However, its biological function in higher organisms, such as vertebrates, is unknown. Here, we report that zebrafish TATDN1 (zTATDN1) possesses a novel endonuclease activity, which first makes a nick at the DNA duplex and subsequently converts the nick into a DNA double-strand break in vitro. This biochemical property allows zTATDN1 to catalyze decatenation of catenated kinetoplast DNA to produce separated linear DNA in vitro. We further determine that zTATDN1 is predominantly expressed in eye cells during embryonic development. Knockdown of TATDN1 in zebrafish embryos results in an abnormal cell cycle progression, formation of polyploidy and aberrant chromatin structures. Consequently, the TATDN1-deficient morphants have disordered eye cell layers and significantly smaller eyes compared with the WT control. Altogether, our current studies suggest that zTATDN1 plays an important role in chromosome segregation and eye development in zebrafish. 相似文献
3.
Hui Yang Changwei Liu Joonas Jamsen Zhenxing Wu Yingjie Wang Jun Chen Li Zheng Binghui Shen 《Cell cycle (Georgetown, Tex.)》2012,11(24):4626-4632
The DNase domain-containing protein TATDN1 is a conserved nuclease in both prokaryotes and eukaryotes. It was previously implicated to play a role in apoptotic DNA fragmentation in yeast and C. elegans. However, its biological function in higher organisms, such as vertebrates, is unknown. Here, we report that zebrafish TATDN1 (zTATDN1) possesses a novel endonuclease activity, which first makes a nick at the DNA duplex and subsequently converts the nick into a DNA double-strand break in vitro. This biochemical property allows zTATDN1 to catalyze decatenation of catenated kinetoplast DNA to produce separated linear DNA in vitro. We further determine that zTATDN1 is predominantly expressed in eye cells during embryonic development. Knockdown of TATDN1 in zebrafish embryos results in an abnormal cell cycle progression, formation of polyploidy and aberrant chromatin structures. Consequently, the TATDN1-deficient morphants have disordered eye cell layers and significantly smaller eyes compared with the WT control. Altogether, our current studies suggest that zTATDN1 plays an important role in chromosome segregation and eye development in zebrafish. 相似文献
4.
Watanabe K Fuse T Asano I Tsukahara F Maru Y Nagata K Kitazato K Kobayashi N 《FEBS letters》2006,580(24):5785-5790
Influenza virus matrix protein 1 (M1) has been shown to play a crucial role in the virus replication, assembly and budding. We identified heat shock cognate protein 70 (Hsc70) as a M1 binding protein by immunoprecipitation and MALDI-TOF MS. The C terminal domain of M1 interacts with Hsc70. We found that Hsc70 does not correlate with the transport of M1 to the nucleus, however, it does inhibit the nuclear export of M1 and NP, thus resulting in the inhibition of viral production. This is the first demonstration that Hsc70 is directly associated with M1 and therefore is required for viral production. 相似文献
5.
Kondoh K Tsuji N Asanuma K Kobayashi D Watanabe N 《Experimental cell research》2007,313(16):3486-3496