首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell surface receptors for molecular chaperones   总被引:2,自引:0,他引:2  
Heat shock proteins are intracellular molecular chaperones. However, extracellular heat shock proteins have recently been shown to mediate a range of powerful effects in inflammatory cells, neuronal cells and immune cells. These effects are transmitted by a number of cell surface receptors including LRP/CD91, CD40, Toll-like receptors, Scavenger receptors and c-type Lectins. However, although extracellular heat shock proteins are products of at least five different gene superfamilies, similar receptor types often trigger their effects. We have assessed heat shock protein binding to the different receptor types with particular regard to its role in tumor immunology. Heat shock protein 70 released from dying tumor cells or injected as part of a vaccine induces a remarkable range of immune effects. This molecular chaperone induces powerful pro-inflammatory signaling cascades leading to the activation of antigen presenting cells. In addition, heat shock protein 70 is able to transport antigenic peptides as cargo from the tumor cell cytoplasm across the membranes of antigen presenting cells and deliver them to major histocompatability class I molecules, a process known as "cross-presentation". The resulting major histocompatability class I-peptide complexes are then displayed on the cell surface by antigen presenting cells, leading to activation of cytotoxic T lymphocytes and tumor cell killing. Understanding how heat shock protein-receptor binding orchestrates individual components of tumor immunity will permit enhanced design of molecular chaperone based immunotherapy.  相似文献   

2.
Organized networks of heat shock proteins, which possess molecular chaperone activity, protect cells from abrupt environmental changes. Additionally, molecular chaperones are essential during stress-free periods, where they moderate housekeeping functions. During tumorigenesis, these chaperone networks are extensively remodeled in such a way that they are advantageous to the transforming cell. Molecular chaperones by buffering critical elements of signaling pathways empower tumor evolution leading to chemoresistance of cancer cells. Controversially, the same molecular chaperones, which are indispensable for p53 in reaching its tumor suppressor potential, are beneficial in adopting an oncogenic gain of function phenotype when TP53 is mutated. On the molecular level, heat shock proteins by unwinding the mutant p53 protein expose aggregation-prone sites leading to the sequestration of other tumor suppressor proteins causing inhibition of apoptosis and chemoresistance. Therefore, within this review therapeutic approaches combining classical immuno- and/or chemotherapy with specific inhibition of selected molecular chaperones shall be discussed.  相似文献   

3.
Inducible heat shock proteins are molecular chaperones whose expression is increased after many different types of stress. They have a protective function helping the cell to cope with lethal conditions. Their basal expression is low in nonstressed, normal and nontransformed cells. However, in cancer cells and particularly in hematological malignancies, they are surprisingly abundant. Malignant cells have to rewire their metabolic requirements and therefore have a higher need for chaperones. This cancer cell addiction for HSPs is the basis for the use of HSP inhibitors in cancer therapy. HSPs have been shown to interact with different key apoptotic proteins. As a result, HSPs can essentially block the apoptotic pathways at several steps, most of them involving the activation of cystein proteases called caspases. Apoptosis and differentiation are physiological processes that share many common features, for instance, a controlled caspase activation and chromatin condensation are frequently observed. It is, therefore, not surprising that HSPs may be implicated in the differentiation process. HSPs may determine the fate of the cells by orchestrating the decision of apoptosis versus differentiation. This review will focus on the role of HSPs in hematological malignancies and the emerging therapeutic options that are being either proposed or used to target these protective proteins.  相似文献   

4.
It is now well understood that, although proteins fold spontaneously (in a thermodynamic sense), many nevertheless require the assistance of helpers called molecular chaperones to reach their correct and active folded state in living cells. This is because the pathways of protein folding are full of traps for the unwary: the forces that drive proteins into their folded states can also drive them into insoluble aggregates, and, particularly when cells are stressed, this can lead, without prevention or correction, to cell death. The chaperonins are a family of molecular chaperones, practically ubiquitous in all living organisms, which possess a remarkable structure and mechanism of action. They act as nanoboxes in which proteins can fold, isolated from their environment and from other partners with which they might, with potentially deleterious consequences, interact. The opening and closing of these boxes is timed by the binding and hydrolysis of ATP. The chaperonins which are found in bacteria are extremely well characterized, and, although those found in archaea (also known as thermosomes) and eukaryotes have received less attention, our understanding of these proteins is constantly improving. This short review will summarize what we know about chaperonin function in the cell from studies on the archaeal chaperonins, and show how recent work is improving our understanding of this essential class of molecular chaperones.  相似文献   

5.
Molecular chaperones, both endoplasmic reticulum and cytosol derived, have been identified as tumor rejection antigens; in animal models, they can elicit prophylactic and therapeutic immune responses against their tumor of origin. Chaperone immunogenic activity derives from three principal characteristics: they bind an array of immunogenic (poly)peptides, they can be efficiently internalized by professional antigen-presenting cells, and once internalized, they traffic to a subcellular compartment(s) where peptide release can occur. Within the antigen-presenting cell, chaperone-derived peptides can be assembled onto major histocompatibility class I molecules for presentation at the antigen-presenting cell surface, thereby yielding the requisite and specific CD8+ T-cell responses that contribute to the process of tumor rejection. Though it is clear that chaperones, in particular GRP94 (gp96), calreticulin and Hsp70, can elicit cellular immune responses, the subcellular basis of chaperone processing by antigen-presenting cells remains mysterious. In this review, we discuss recent reports describing the identification of a chaperone internalization receptor and the physiological release of chaperones from necrotic cells, and we present views on the trafficking pathways within antigen-presenting cells that may function to deliver the chaperone-associated peptides to subcellular organelles for their subsequent exchange onto major histocompatibility complex molecules.  相似文献   

6.
We have utilized a free-solution/isoelectric focusing technique (FS-IEF) to obtain fractions rich in multiple chaperone proteins from clarified A20 tumor lysates. Vaccines prepared from chaperone-rich fractions are capable of providing protective immunity in mice subsequently challenged intravenously with the same A20 B cell leukemia cells. This protection is at least equal to that provided by purified, tumor-derived heat-shock protein 70, which was the best chaperone immunogen in our hands against this aggressive murine leukemia model. Dosage escalation studies, however, revealed that increasing vaccine dosages actually abrogated the protective effects. The physical nature of the enriched chaperones indicates that they are associated in complexes, which may have implications for their function. FS-IEF is relatively simple, rapid, and efficient, thus making combined multi-chaperone therapy feasible. Received: 11 May 2000 / Accepted: 13 June 2000  相似文献   

7.
8.
Cytoskeletal structure is continually remodeled to accommodate normal cell growth and to respond to pathophysiological cues. As a consequence, several cytoskeleton-interacting proteins become involved in a variety of cellular processes such as cell growth and division, cell movement, vesicle transportation, cellular organelle location and function, localization and distribution of membrane receptors, and cell-cell communication. Molecular chaperones and immunophilins are counted among the most important proteins that interact closely with the cytoskeleton network, in particular with microtubules and microtubule-associated factors. In several situations, heat-shock proteins and immunophilins work together as a functionally active heterocomplex, although both types of proteins also show independent actions. In circumstances where homeostasis is affected by environmental stresses or due to genetic alterations, chaperone proteins help to stabilize the system. Molecular chaperones facilitate the assembly, disassembly and/or folding/refolding of cytoskeletal proteins, so they prevent aberrant protein aggregation. Nonetheless, the roles of heat-shock proteins and immunophilins are not only limited to solve abnormal situations, but they also have an active participation during the normal differentiation process of the cell and are key factors for many structural and functional rearrangements during this course of action. Cytoskeleton modifications leading to altered localization of nuclear factors may result in loss- or gain-of-function of such factors, which affects the cell cycle and cell development. Therefore, cytoskeletal components are attractive therapeutic targets, particularly microtubules, to prevent pathological situations such as rapidly dividing tumor cells or to favor the process of cell differentiation in other cases. In this review we will address some classical and novel aspects of key regulatory functions of heat-shock proteins and immunophilins as housekeeping factors of the cytoskeletal network.  相似文献   

9.
B cells as antigen presenting cells   总被引:5,自引:0,他引:5  
Several characteristics confer on B cells the ability to present antigen efficiently: (1) they can find T cells in secondary lymphoid organs shortly after antigen entrance, (2) BCR-mediated endocytosis allows them to concentrate small amounts of specific antigen, and (3) BCR signaling and HLA-DO expression direct their antigen processing machinery to favor presentation of antigens internalized through the BCR. When presenting antigen in a resting state, B cells can induce T cell tolerance. On the other hand, activation by antigen and T cell help converts them into APC capable of promoting immune responses. Presentation of self antigens by B cells is important in the development of autoimmune diseases, while presentation of tumor antigens is being used in vaccine strategies to generate immunity. Thus, detailed understanding of the antigen presenting function of B cells can lead to their use for the generation or inhibition of immune responses.  相似文献   

10.
Kang BH 《BMB reports》2012,45(1):1-6
Hsp90 is one of the most conserved molecular chaperones ubiquitously expressed in normal cells and over-expressed in cancer cells. A pool of Hsp90 was found in cancer mitochondria and the expression of the mitochondrial Hsp90 homolog, TRAP1, was also elevated in many cancers. The mitochondrial pool of chaperones plays important roles in regulating mitochondrial integrity, protecting against oxidative stress, and inhibiting cell death. Pharmacological inactivation of the chaperones induced mitochondrial dysfunction and concomitant cell death selectively in cancer cells, suggesting they can be target proteins for the development of cancer therapeutics. Several drug candidates targeting TRAP1 and Hsp90 in the mitochondria have been developed and have shown strong cytotoxic activity in many cancers, but not in normal cells in vitros and in vivo. In this review, recent developments in the study of mitochondrial chaperones and the mitochondria-targeted chaperone inhibitors are discussed.  相似文献   

11.
Heat shock proteins HSP70 and GP96: structural insights   总被引:3,自引:0,他引:3  
Several heat shock proteins (HSPs) act as potent adjuvants for eliciting anti-tumor immunity. HSP-based tumor vaccine strategies have been highly successful in animal models and are undergoing testing in clinical trials. It is generally accepted that HSPs, functioning as chaperones for tumor antigens, elicit tumor-specific adaptive immune responses. HSPs also appear to induce innate immune responses in an antigen-independent fashion. Innate responses generated by HSPs may contribute to anti-tumor immunity. Immunologically active chaperones with anti-tumor activity are referred to as “immunochaperones”. Here, we review the studies that address the role of structural domains or regions of the immunochaperones HSP70 and GP96 that may be involved in the induction of adaptive or innate immune responses. This article forms part of the Symposium in Writing “Thermal stress-related modulation of tumor cell physiology and immune responses”, edited by Elfriede Noessner.  相似文献   

12.
Heat shock proteins: essential proteins for apoptosis regulation   总被引:4,自引:0,他引:4  
Many different external and intrinsic apoptotic stimuli induce the accumulation in the cells of a set of proteins known as stress or heat shock proteins (HSPs). HSPs are conserved proteins present in both prokaryotes and eukaryotes. These proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and by preventing their aggregation. HSPs have a protective function, that is they allow the cells to survive to otherwise lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. Several of these proteins have demonstrated to directly interact with components of the cell signalling pathways, for example those of the tightly regulated caspase-dependent programmed cell death machinery, upstream, downstream and at the mitochondrial level. HSPs can also affect caspase-independent apoptosis-like process by interacting with apoptogenic factors such as apoptosis-inducing factor (AIF) or by acting at the lysosome level. This review will describe the different key apoptotic proteins interacting with HSPs and the consequences of these interactions in cell survival, proliferation and apoptotic processes. Our purpose will be illustrated by emerging strategies in targeting these protective proteins to treat haematological malignancies.  相似文献   

13.
《朊病毒》2013,7(4):217-222
Exposure to high temperature or other stresses induces a synthesis of heat shock proteins. Many of these proteins are molecular chaperones, and some of them help cells to cope with heat induced denaturation and aggregation of other proteins. In the last decade, chaperones have received increased attention in connection with their role in maintenance and propagation of the Saccharomyces cerevisiae prions, infectious or heritable agents transmitted at the protein level. Recent data suggest that functioning of the chaperones in reactivation of heat damaged proteins and in propagation of prions is based on the same molecular mechanisms but may lead to different consequences depending on the type of aggregate. In both cases the concerted and balanced action of “chaperones’ team”, including Hsp104, Hsp70, Hsp40 and possibly other proteins, determines whether a misfolded protein is to be incorporated into an aggregate, rescued to the native state or targeted for degradation.  相似文献   

14.
Molecular chaperones have evolved diverse tertiary and quaternary structures to stabilize non-native polypeptides and facilitate their transition to the native state. Indeed, different families of chaperones lack sequence similarity, and few are represented ubiquitously in all three domains of life. Despite their discrete evolutionary paths, recent crystal structures reveal that many chaperones use seemingly convergent strategies to bind non-native proteins. This crystallographic evidence shows, or strongly suggests, that chaperones including prefoldin, Skp, trigger factor, Hsp40 and Hsp90 have clamp-like structural features used to grip substrate proteins. We explore the notion that clamp-like structures are evolutionarily favored by both ATP-dependent and ATP-independent molecular chaperones. Presumably, clamps present a multivalent binding surface ideal for protecting unstable protein conformers until they reach the native state or are transferred to another component of the folding machinery.  相似文献   

15.
A few reports suggest that molecular mimicry can have a role in determining the more severe and deadly forms of COVID-19, inducing endothelial damage, disseminated intravascular coagulation, and multiorgan failure. Heat shock proteins/molecular chaperones can be involved in these molecular mimicry phenomena. However, tumor cells can display on their surface heat shock proteins/molecular chaperones that are mimicked by SARS-CoV-2 molecules (including the Spike protein), similarly to what happens in other bacterial or viral infections. Since molecular mimicry between SARS-CoV-2 and tumoral proteins can elicit an immune reaction in which antibodies or cytotoxic cells produced against the virus cross-react with the tumor cells, we want to prompt clinical studies to evaluate the impact of SARS-CoV-2 infection on prognosis and follow up of various forms of tumors. These topics, including a brief historical overview, are discussed in this paper.  相似文献   

16.
17.
Tumor cells that constitutively express MHC class I molecules and are genetically modified to express MHC class II (MHC II) and costimulatory molecules are immunogenic and have therapeutic efficacy against established primary and metastatic cancers in syngeneic mice and activate tumor-specific human CD4+ T lymphocytes. Previous studies have indicated that these MHC II vaccines enhance immunity by directly activating tumor-specific CD4+ T cells during the immunization process. Because dendritic cells (DCs) are considered to be the most efficient APCs, we have now examined the role of DCs in CD4+ T cell activation by the MHC II vaccines. Surprisingly, we find that DCs are essential for MHC II vaccine immunogenicity; however, they mediate their effect through "cross-dressing." Cross-dressing, or peptide-MHC (pMHC) transfer, involves the generation of pMHC complexes within the vaccine cells, and their subsequent transfer to DCs, which then present the intact, unprocessed complexes to CD4+ T lymphocytes. The net result is that DCs are the functional APCs; however, the immunogenic pMHC complexes are generated by the tumor cells. Because MHC II vaccine cells do not express the MHC II accessory molecules invariant chain and DM, they are likely to load additional tumor Ag epitopes onto MHC II molecules and therefore activate a different repertoire of T cells than DCs. These data further the concept that transfer of cellular material to DCs is important in Ag presentation, and they have direct implications for the design of cancer vaccines.  相似文献   

18.
The role of stress proteins in prostate cancer   总被引:1,自引:0,他引:1  
The development of therapeutic resistance, after hormone or chemotherapy for example, is the underlying basis for most cancer deaths. Exposure to anticancer therapies induces expression of many stress related proteins, including small heat shock proteins (HSPs). HSPs interact with various client proteins to assist in their folding and enhance the cellular recovery from stress, thus restoring protein homeostasis and promoting cell survival. The vents of cell stress and cell death are linked, as the induction of molecular chaperones appears to function at key regulatory points in the control of apoptosis. On the basis of these observations and on the role of molecular chaperones in the regulation of steroid receptors, kinases, caspases, and other protein remodelling events involved in chromosome replication and changes in cell structure, it is not surprising that molecular chaperones have been implicated in the control of cell growth and in resistance to various anticancer treatments that induce apoptosis. Recently, several molecular chaperones such as Clusterin and HSP27 have been reported to be involved in development and progression of hormone-refractory prostate cancer. In this review, we address some of the molecular and cellular events initiated by treatment induced stress, and discuss the potential role of chaperone proteins as targets for prostate cancer treatment.  相似文献   

19.
We have utilized a free-solution-isoelectric focusing technique (FS-IEF) to obtain chaperone-rich cell lysates (CRCL) fractions from clarified tumor homogenates. The FS-IEF technique for enriching multiple chaperones from tumor lysate is relatively easy and rapid, yielding sufficient immunogenic material for clinical use. We have shown that tumor-derived CRCL carry antigenic peptides. Dendritic cells (DCs) uptake CRCL and cross-present the chaperoned peptides to T cells. Tumor-derived CRCL induce protective immune responses against a diverse range of murine tumor types in different genetic backgrounds. When compared to purified heat shock protein 70 (HSP70), single antigenic peptide or unfractionated lysate, CRCL have superior ability to activate/mature DCs and are able to induce potent, long lasting and tumor specific T-cell-mediated immunity. While CRCL vaccines were effective as stand-alone therapies, the enhanced immunogenicity arising from CRCL-pulsed DC as a vaccine indicates that CRCL could be the antigen source of choice for DC-based anti-cancer immunotherapies. The nature of CRCL's enhanced immunogenicity may lie in the broader antigenic peptide repertoire as well as the superior immune activation capacity of CRCL. Exongenous CRCL also supply danger signals in the context of apoptotic tumor cells and enhance the immunogenicity of apoptotic tumor cells, leading to tumor-specific T cell dependent long-term immunity. Moreover, CRCL based vaccines can be effectively combined with chemotherapy to treat cancer. Our findings indicate that CRCL have prominent adjuvant effects and are effective sources of tumor antigens for pulsing DCs. Tumor-derived CRCL are promising anti-cancer vaccines that warrant clinical research and development.  相似文献   

20.
Bacteria attach to their appropriate environmental niche by using adhesins. To maximize their contact with the environment, adhesins are often present on the ends of long hairlike structures called pili. Recently, attention has focused on pili of Gram-positive bacteria because they may be vaccine candidates in important human pathogens. These pili differ from the well-studied pili of Gram-negative bacteria because their subunits are covalently linked, they do not require specific chaperones for assembly, and the tip protein (likely to be the adhesin) is not required to initiate formation of the pilus structure. In Gram-positive bacteria, the genes for pili occur in clusters, which may constitute mobile genetic elements. These clusters include the transpeptidase(s) of the sortase family that is/are required for polymerization of the subunit proteins. However, efficient covalent attachment of the completed pilus structure to the cell wall is accomplished, in cases where this has been studied, by the 'housekeeping' sortase, which is responsible for attachment to the peptidoglycan of most surface proteins containing cell wall sorting signals. This enzyme is encoded elsewhere on the genome. Because pili of Gram-positive bacteria have not been extensively investigated yet, we hope that this MicroReview will help to pinpoint the areas most in need of further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号