首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
To analyze the mechanism of action of the insulinomimetic agents H2O2, vanadate, and pervanadate (H2O2 and vanadate), CHO cells or CHO cells that overexpress wild-type or mutant insulin receptor and/or the insulin receptor substrate (IRS-1) were used. H2O2 or vanadate treatment alone had little or no effect on tyrosine phosphorylation of cellular proteins; however, pevanadate treatment dramatically enhanced tyrosine phosphorylation of a number of proteins including the insulin receptor and IRS-1. However, the insulin receptor and IRS-1 coimmunoprecipitate from insulin-treated but not from pervanadate-treated cells. Pervanadate-induced tyrosine phosphorylation of the insulin receptor led to an increase in insulin receptor tyrosine kinase activity toward IRS-1 in vivo and IRS-1 peptides in vitro equal to that induced by insulin treatment. Pervanadate-enhanced phosphorylation of IRS-1 led to a fifteenfold increase in IRS-1–associated phosphatidylinositol (Ptdlns) 3-kinase activity. However, insulin receptor–associated Ptdlns 3-kinase activity from pervanadate-treated cells was not detectable, while insulin receptor–associated Ptdlns 3-kinase activity from insulin-treated cells was 20% of the IRS-1-associated activity. Thus, pervanadate but not H2O2 or vanadate alone under these conditions mimics many of insulin actions, but pervanadate treatment does not induce insulin receptor/IRS-1 association.  相似文献   

2.
We have studied the reversibility of insulin receptor phosphorylation to establish the relation between this autophosphorylation reaction and the initiation of insulin action and between dephosphorylation and the termination of insulin effects in cells. In cultured Fao hepatoma cells labeled with 32PO4(3-), insulin increased 5-fold the phosphorylation of the beta-subunit of the insulin receptor at serine, threonine, and tyrosine residues. Addition of anti-insulin antiserum to cells incubated with insulin caused dissociation of insulin from the receptor and concurrent dephosphorylation of the beta-subunit. 32PO4(3-) associated with the insulin-stimulated receptor could be decreased by the addition of sodium phosphate to the medium but with a slower time course. Insulin stimulated phosphorylation of insulin receptor purified partially on immobilized wheat germ agglutinin. This reaction utilized [gamma-32P] ATP and occurred exclusively on tyrosine residues. Addition of unlabeled ATP caused a decrease in the amount of PO4(3-) associated with the receptor. Insulin-stimulated phosphorylation was also observed if the receptors were further purified by immunoprecipitation with anti-insulin receptor antibody prior to the phosphorylation reaction; however, addition of unlabeled ATP to this system did not chase the labeled 32PO4(3-) from the beta-subunit. These data are consistent with the notion that phosphorylation and dephosphorylation of the insulin receptor parallel the onset and termination of insulin action. Phosphatase activity involved in the dephosphorylation of the insulin receptor appears to be a glycoprotein because it was retained after partial purification of the receptor on wheat germ agglutinin-agarose; however, this phosphatase activity is distinct from the insulin receptor because it was not retained after immunoprecipitation of the receptor with anti-insulin receptor antibodies.  相似文献   

3.
《MABS-AUSTIN》2013,5(7):1206-1218
ABSTRACT

Post-translational modifications, such as the phosphorylation of tyrosines, are often the initiation step for intracellular signaling cascades. Pan-reactive antibodies against modified amino acids (e.g., anti-phosphotyrosine), which are often used to assay these changes, require isolation of the specific protein prior to analysis and do not identify the specific residue that has been modified (in the case that multiple amino acids have been modified). Phosphorylation state-specific antibodies (PSSAs) developed to recognize post-translational modifications within a specific amino acid sequence can be used to study the timeline of modifications during a signal cascade. We used the FcεRI receptor as a model system to develop and characterize high-affinity PSSAs using phage and yeast display technologies. We selected three β-subunit antibodies that recognized: 1) phosphorylation of tyrosines Y218 or Y224; 2) phosphorylation of the Y228 tyrosine; and 3) phosphorylation of all three tyrosines. We used these antibodies to study the receptor activation timeline of FcεR1 in rat basophilic leukemia cells (RBL-2H3) upon stimulation with DNP24-BSA. We also selected an antibody recognizing the N-terminal phosphorylation site of the γ-subunit (Y65) of the receptor and applied this antibody to evaluate receptor activation. Recognition patterns of these antibodies show different timelines for phosphorylation of tyrosines in both β and γ subunits. Our methodology provides a strategy to select antibodies specific to post-translational modifications and provides new reagents to study mast cell activation by the high-affinity IgE receptor, FcεRI.  相似文献   

4.
5.
《FEBS letters》1994,340(3):269-275
Treatment of Chinese hamster ovary (CHO) cells over-expressing the human insulin receptor (CHO-HIRc) with the insulin mimetic agent, vanadate, resulted in a dose- and time-dependent tyrosine phosphorylation of two proteins with apparent molecular sizes of 42 kDa (p42) and 44 kDa (p44). However, vanadate was unable to stimulate the tyrosyi phosphorylation of theβ-subunit of the insulin receptor. By using myelin basic protein (MBP) as the substrate to measure mitogen-activated protein (MAP) kinase activity in whole cell lysates, vanadate-stimulated tyrosyl phosphorylation of p42 and p44 was associated with a dose- and time-dependent activation of MAP kinase activity. Furthermore, affinity purification of cell lysates on anti-phosphotyrosine agarose column followed by immunoblotting with a specific antibody to MAP kinases demonstrated that vanadate treatment increased the tyrosyl phosphorylation of both p44mapk and p42mapk by several folds, as compared to controls, in concert with MAP kinase activation. In addition, retardation in gel mobility further confirmed that vanadate treatment increased the phosphorylation of p44mapk and p42mapk in CHO-HIRc. A similar effect of vanadate on MAP kinase tyrosyl phosphorylation and activation was also observed in CHO cells over-expressing a protein tyrosine kinase-deficient insulin receptor (CHO-1018). These results demonstrate that the protein tyrosine kinase activity of the insulin receptor may not be required in the signaling pathways leading to the vanadate-mediated tyrosyl phosphorylation and activation of MAP kinases.  相似文献   

6.
Cell signalling for insulin may include insulin receptor tyrosine kinase catalysing the phosphorylation of one or more cell proteins. Since temporally the insulin receptor will encounter plasma membrane protein first, we have studied the in vitro phosphorylation of purified plasma membrane preparations. Two proteins were immunoprecipitated with anti-phosphotyrosine antibody from rat liver, muscle, heart and brain membranes and from human placenta membranes: the insulin receptor (detected as a phosphorylated-β-subunit) and a 180,000 molecular weight protein (pp180). pp180 is a monomeric glycoprotein that in the absence of dithiothreitol migrated in denaturing gels like a 150,000 molecular weight protein. pp180 was a substrate for the insulin receptor: (i) receptor and pp180 phosphorylation followed a similar insulin dose-response, although fold-stimulation of autophosphorylation was greater; and (ii) removal of insulin receptors with monoclonal antibodies prevented subsequent pp180 phosphorylation. Insulin-activated receptors increased the extent, but not the rate, of pp180 phosphorylation; the increased phosphate was incorporated into tyrosine and appeared to do so in three or four of pp180's 12 tryptic phosphopeptides. Some data suggest that pp180 is the same protein in each of the tested tissues. The occurrence of pp180, an insulin receptor substrate, in plasma membranes of several insulin responsive tissues suggests that it has a role in insulin signalling.  相似文献   

7.
The insulin receptor, a glycoprotein consisting of two extracellular alpha- and two transmembrane beta-subunits, is thought to mediate hormone action by means of its tyrosine-specific protein kinase activity. To explore the mechanism of insulin receptor phosphorylation we have used NIH3T3 cells transfected with two receptor constructs: one encoding a chimeric receptor composed of the extracellular domain of the human EGF receptor and the cytosolic domain of the human insulin receptor beta-subunit, and a second construct encoding a kinase-defiecient human insulin receptor. Stimulation of these cells with EGF induced tyrosine autophosphorylation of the EGF-insulin receptor chimera (150 kd) and tyrosine phosphorylation of the beta-subunit of the kinase-deficient insulin receptor (95 kd). The phosphopeptides of the autophosphorylated cytoplasmic domain of the EGF-insulin receptor chimera were comparable to those of the transphosphorylated beta-subunit of the kinase-deficient insulin receptor and of the wild-type human insulin receptor. When immunoaffinity purified EGF-insulin receptor hybrids and kinase-deficient insulin receptors were used in a cell lysate phosphorylation assay, it was found that addition of EGF produced 32P-labeling of both receptor species. We conclude that EGF acting directly through the EGF-insulin receptor chimera causes transphosphorylation of the kinase-deficient insulin receptor. These data support the notion that autophosphorylation of the insulin receptor may proceed by an intermolecular mechanism.  相似文献   

8.
Lanthanide-based luminescent ligand binding assays are superior to traditional radiolabel assays due to improving sensitivity and affordability in high-throughput screening while eliminating the use of radioactivity. Despite significant progress using lanthanide(III)-coordinated chelators such as diethylenetriaminepentaacetic acid (DTPA) derivatives, dissociation-enhanced lanthanide fluoroimmunoassays (DELFIAs) have not yet been successfully used with more stable chelators (e.g., tetraazacyclododecyltetraacetic acid [DOTA] derivatives) due to the incomplete release of lanthanide(III) ions from the complex. Here a modified and optimized DELFIA procedure incorporating an acid treatment protocol is introduced for use with Eu(III)-DOTA-labeled peptides. Complete release of Eu(III) ions from DOTA-labeled ligands was observed using hydrochloric acid (2.0 M) prior to the luminescent enhancement step. [Nle4,d-Phe7]-α-melanocyte-stimulating hormone (NDP-α-MSH) labeled with Eu(III)-DOTA was synthesized, and the binding affinity to cells overexpressing the human melanocortin-4 (hMC4) receptor was evaluated using the modified protocol. Binding data indicate that the Eu(III)-DOTA-linked peptide bound to these cells with an affinity similar to its DTPA analogue. The modified DELFIA procedure was further used to monitor the binding of an Eu(III)-DOTA-labeled heterobivalent peptide to the cells expressing both hMC4 and cholecystokinin-2 (CCK-2) receptors. The modified assay provides superior results and is appropriate for high-throughput screening of ligand libraries.  相似文献   

9.
1. Binding of insulin and insulin-like growth factor I (IGF-I) to HepG2 cells was analysed with regard to competition by both insulin and IGF-I. At concentrations of insulin that caused maximal phosphorylation of the insulin receptor, virtually no displacement of IGF-I binding was observed. Similarly, at concentrations of IGF-I that caused maximal phosphorylation of the IGF-I receptor, no displacement of insulin binding was observed. 2. When the phosphorylation of both receptors was examined individually by using specific monoclonal antibodies to immunoprecipitate the receptors, phosphorylation of the insulin receptor was found to increase on both serine and tyrosine residues in cells treated with 100 ng of IGF-I/ml. In contrast, no increased phosphorylation of IGF-I receptor was observed in cells treated with 100 ng of insulin/ml. 3. The increase in phosphorylation of insulin receptor in response to IGF-I correlated with the dose-response of IGF-I-stimulated phosphorylation of the IGF-I receptor. 4. The IGF-I-stimulated phosphorylation of the insulin receptor could be blocked by preincubation with a monoclonal antibody that blocks IGF-I binding to the IGF-I receptor.  相似文献   

10.
The effect of 8-bromo-cAMP and forskolin on the phosphorylation state and protein kinase activity of the insulin receptor was evaluated in cultured IM-9 lymphoblasts. 8-Bromo-cAMP (1 mM) or forskolin (10 microM) enhanced the phosphorylation of the insulin receptor purified from 32P-labeled cells by affinity chromatography on wheat germ agglutinin-agarose and immunoprecipitation with monoclonal antibody. In the absence of insulin, phosphorylation of the beta subunit of the receptor was increased approximately 2-fold by raising intracellular cAMP. Phosphoamino acid analysis of the beta subunit following treatment of cells with forskolin revealed an increase in phosphoserine and phosphothreonine residues. In contrast, the insulin-stimulated phosphorylation of the receptor occurred on serine, threonine, and tyrosine residues and was diminished by prior exposure of cells to forskolin. Pulse-chase experiments indicated that forskolin did not enhance the turnover of phosphate on the receptor of cells previously exposed to insulin. Furthermore, extracts from forskolin-treated cells did not differ from control extracts in their capacity to dephosphorylate 32P-labeled receptor isolated from cells treated with insulin. The insulin-dependent tyrosine protein kinase activity of the receptor isolated from forskolin-treated cells was approximately 50% as active as the receptor isolated from either control or insulin-treated cells. This was assessed using both histone and a peptide synthesized in accordance with the deduced amino acid sequence of a potential autophosphorylation site of the human receptor (Thr-Arg-Asp-Ile-Tyr-Glu-Thr-Asp-Tyr-Tyr-Arg-Lys) as substrates for the protein kinase reaction. These results suggest that agents that raise intracellular cAMP increase phosphorylation of the insulin receptor on serine and threonine residues, reduce insulin-mediated receptor phosphorylation on tyrosine, serine, and threonine residues, and inhibit the insulin-dependent tyrosine protein kinase activity of the receptor. Thus cAMP may attenuate insulin action by altering the state of phosphorylation of the insulin receptor.  相似文献   

11.
We previously have shown that insulin treatment of cells greatly increases the activity of phosphatidylinositol (PI) 3-kinase in immunoprecipitates made with an antibody to phosphotyrosine. However, the association of PI 3-kinase activity with the activated insulin receptor is not significant under these conditions. In the present study, we have attempted to reconstitute the association of PI 3-kinase activity with the activated insulin receptor in vitro. PI 3-kinase activity does indeed associate with the autophosphorylated insulin receptor in our in vitro system. The autophosphorylation of the insulin receptor and/or its associated conformational change appear to be necessary for the association of PI 3-kinase activity with the receptor, since kinase negative receptor failed to bind PI 3-kinase activity. After binding, PI 3-kinase or its associated protein seems to be released from the activated receptor after the completion of its tyrosine phosphorylation by the receptor. Tyr960 in the juxtamembrane region of the insulin receptor beta-subunit seems to be involved in the association of PI 3-kinase activity with the receptor, but not C terminus region of the beta-subunit including two tyrosine autophosphorylation sites (Tyr1316 and Tyr1322). The in vitro assay system for the association of PI 3-kinase activity with the insulin receptor can be utilized to study the mechanism of interaction of these molecules and will be an useful method to detect other associated molecules with the insulin receptor.  相似文献   

12.
Hyperglycemia and impaired insulin signaling are considered as major factors in the retinal pathology in diabetic retinopathy (DR). Numerous reports support that these two factors damage retinal glial as well as neuronal cells early in diabetes. However, it is not known whether diabetic induced hyperglycemia causes a depression to the insulin signaling. In this study we utilized a well characterized cultured Muller cells (TR-MUL) where we found a high expression of insulin receptor molecules. TR-MUL Cells were treated with high glucose, glutamate and hydrogen peroxide, and activated with insulin. Following treatments, cell lysates were analyzed by immunoblotting experiments for insulin receptor (IRβ) and insulin receptor substrate (IRS1). In addition, cell lysates were immunoprecipitated using antibodies against insulin receptor proteins to analyze tyrosine phosphorylation and serine phosphorylation of insulin receptor proteins. Results indicate that hyperglycemia did not affect the expression of insulin receptor proteins in cultured TR-MUL cells. Although, hyperglycemia seems to inhibit the interaction between IRS1 and IRβ. Hydrogen peroxide increased the tyrosine phosphorylation of insulin receptor proteins but excess glutamate could not affect the insulin receptor proteins indicating that glutamate may not cause oxidative stress in TR-MUL cells. Hyperglycemia lowered serine phosphorylation of IRSser632 and IRSser1101 however, IRSser307 was not affected. Thus, hyperglycemia may not affect insulin signaling through tyrosine phosphorylation of insulin receptor proteins but may inhibit the interactions between insulin receptor proteins. Hyperglycemia induced phosphorylation of various serine residues of IRS1 and their influence on insulin signaling needs further investigation in TR-MUL cells.  相似文献   

13.
The biochemical properties of insulin receptors from toad retinal membranes were examined in an effort to gain insight into the role this receptor plays in the retina. Competition binding assays revealed that toad retinal membranes contained binding sites that displayed an equal affinity for insulin and insulin-like growth factor I (IGF-I). Affinity labeling of toad retinal membrane proteins with 125I-insulin resulted in the specific labeling of insulin receptor alpha-subunits of approximately 105 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of partially reduced (alpha beta-heterodimer) receptors affinity-labeled with 125I-insulin indicated the presence of a disulfide-linked beta-subunit of approximately 95 kDa. Endoglycosidase F digestion of the affinity-labeled alpha-subunits increased their mobility by reducing their apparent mass to approximately 83 kDa. This receptor was not detected by immunoblot analysis with a site-specific antipeptide antibody directed against residues 657-670 of the carboxy terminal of the human insulin receptor alpha-subunit, whereas this antibody did label insulin receptor alpha-subunits from pig, cow, rabbit, and chick retinas. In in vitro autophosphorylation assays insulin stimulated the tyrosine phosphorylation of toad retina insulin receptor beta-subunits. These data indicate that toad retinal insulin receptors have a heterotetrameric structure whose alpha-subunits are smaller than other previously reported neuronal insulin receptors. They further suggest that a single receptor may account for both the insulin and IGF-I binding activities associated with toad retinal membranes.  相似文献   

14.
We have developed a radioimmunoassay for human insulin receptor. Serum from a patient with Type B severe insulin resistance was used as anti-insulin receptor antiserum. Pure human placental insulin receptor was used as reference preparation and 125I labeled pure insulin receptor as trace. The radioimmunoassay was sensitive (limit of detection less than 17 fmol), reproducible (inter and intra-assay coefficients of variation 12.5% and 1.6% respectively) and specific (no crossreactivity with pure placental IGF-1 receptor, insulin and glucagon). The anti-insulin receptor antibody was, however, able to differentiate between insulin receptor from human placenta and from rat liver. To determine the number of insulin binding sites per receptor, we measured insulin binding (by insulin binding assay) and insulin receptor mass (by radioimmunoassay) in solubilized aliquots from 5 human placentas. The molar ratio of insulin binding to receptor mass was 0.86 +/- 0.12 when binding was determined with monoiodinated 125I-Tyr A 14-insulin. It was 1.94 +/- 0.27 when randomly iodinated 125I-insulin was used. In conclusion, using a sensitive, reproducible and specific radioimmunoassay, we have measured insulin receptor mass independent of insulin binding. Our data are most compatible with binding of one insulin molecule per human placental insulin receptor.  相似文献   

15.
GPR40 is G protein-coupled receptor whose endogenous ligands have recently been identified as free fatty acids (FFAs), and it has been implicated to play an important role in FFA-mediated enhancement of glucose-stimulated insulin release. We have developed a monoclonal antibody against the extracellular domain of GPR40. Specificity of the antibody was demonstrated by immunoprecipitation and cell surface staining using GPR40-transfected cells. GPR40 immunoreactivity was highly abundant in mouse pancreatic β-cells and splenocytes, THP-1 cells, and human peripheral blood mononuclear cells. The anti-GPR40 monoclonal antibody should prove valuable for further studying the function of this nutrient sensing receptor.  相似文献   

16.
The effects of insulin and anti-(insulin receptor) monoclonal antibodies on tyrosine phosphorylation were investigated in fibroblasts transfected with human insulin receptor cDNA (NIH 3T3HIR3.5 cells) using anti-phosphotyrosine immunoblotting. Insulin increased levels of tyrosine phosphorylation in two major proteins of molecular mass 97 kDa (pp97, assumed to be the insulin receptor beta-subunit) and 185 kDa (pp185). Insulin-mimetic anti-receptor antibodies also stimulated tyrosine phosphorylation of both pp97 and pp185. The observation of antibody-stimulated pp97 phosphorylation, as detected by immunoblotting, is in contrast with previous data which failed to show receptor autophosphorylation in NIH 3T3HIR3.5 cells labelled with [32P]P1. The effect of insulin on pp97 was maximal within 1 min, but the response to antibody was apparent only after a lag of 1-2 min and rose steadily over 20 min. The absolute level of antibody-stimulated phosphorylation of both pp97 and pp185 after 20 min was only about 20% of the maximum level induced by equivalent concentrations of insulin, even at concentrations of antibody sufficient for full occupancy of receptors. Another insulin-mimetic agent, wheat-germ agglutinin, stimulated receptor autophosphorylation with kinetics similar to those produced by the antibody. It is suggested that the relatively slow responses to both agents may be a function of the dependence on receptor cross-linking. These data are consistent with a role for the insulin receptor tyrosine kinase activity in the mechanism of action of insulin-mimetic anti-receptor antibodies.  相似文献   

17.
The insulin-like properties of anti-insulin receptor antibodies (P95 Ab) that have been characterized as being directed against the receptor beta-subunit, were studied as probes to assess the interrelationship between insulin action and receptor phosphorylation. When tested on intact cells, P95 Ab mimicked insulin effects. On isolated fat cells, they stimulated 2-deoxyglucose (2-DG) transport and lipogenesis and the P95 antibody maximal effects (173 and 232% of the control values, respectively) represented about 50% of the maximal effects elicited by insulin (317 and 475% of the control values). On cultured Zajdela hepatoma cells (ZHC cells), P95 Ab also mimicked insulin action on the incorporation of [U-14C]glucose into glycogen (158 and 207% of the control value for antibody- and insulin-treated cells, respectively). In all cases the antibody effects were dose-dependent, specific and, when maximal, were not additive with those elicited by insulin. When tested in a cell-free system, P95 Ab faithfully reproduced insulin action on the phosphorylation of the receptor beta-subunit. The maximal antibody and insulin effects (317 and 328% of the control value, respectively) were not additive. P95 Ab were also equally potent as insulin to stimulate the receptor-mediated phosphorylation of an exogenous substrate (365 and 379% of the control value in P95 antibody- and insulin-treated receptors, respectively). As well, P95 Ab proved as able as insulin in stimulating the tyrosine kinase activity of the receptor (89% of the hormone effect) when the activation was carried out in vivo. Taken together, these results are consistent with a role for the kinase activity of the insulin receptor in mediating the action of insulin.  相似文献   

18.
After adding insulin to cells overexpressing the insulin receptor, the activity of phosphatidylinositol (PI) 3-kinase in the anti-phosphotyrosine immunoprecipitates was rapidly and greatly increased. This enzyme may therefore be a substrate for the insulin receptor tyrosine kinase and may be one of the mediators of insulin signal transduction. However, it is unclear whether or not activated tyrosine kinase of the insulin receptor directly phosphorylates PI 3-kinase at tyrosine residue(s) and whether insulin stimulates the specific activity of PI 3-kinase. We reported previously that the 85-kDa subunit of purified PI 3-kinase was phosphorylated at tyrosine residue(s) by the insulin receptor in vitro. To examine the tyrosine phosphorylation of PI 3-kinase and change of its activity by insulin treatment in vivo, we used a specific antibody to the 85-kDa subunit of PI 3-kinase. The activity of PI 3-kinase in immunoprecipitates with the antibody against the p85 subunit of PI 3-kinase was increased about 3-fold by insulin treatment of cells overexpressing insulin receptors. Insulin treatment also stimulated the tyrosine, serine, and threonine phosphorylation of the alpha-type 85-kDa subunit of PI 3-kinase in vivo. Phosphatase treatment of the immunoprecipitates abolished the increase in PI 3-kinase activity. The phosphorylation(s) of the kinase itself, tyrosine phosphorylation(s) of associated protein(s), or the complex formation of the phosphorylated PI 3-kinase with associated proteins may increase the activity of PI 3-kinase.  相似文献   

19.
Insulin treatment of rat H-35 hepatoma cells causes rapid tyrosine phosphorylation of a high molecular weight protein termed pp185 besides autophosphorylation of the beta-subunit of the insulin receptor (IR) in an intact cell system. To elucidate the molecular basis for tyrosine phosphorylation of pp185, cell-free phosphorylation of pp185 was performed using phosphotyrosine-containing proteins (PYPs) purified from detergent-solubilized cell lysates by immunoprecipitation with anti-phosphotyrosine antibody. After insulin treatment of cells, marked increases of tyrosine phosphorylation of pp185 and IR were observed compared to noninsulin-treated cells. Site-specific antibodies that specifically inactivate IR kinase inhibited tyrosine phosphorylation of pp185 as well as the beta-subunit of IR. PYPs purified from detergent-free cell extracts contained pp185 but little IR; tyrosine phosphorylation of pp185 did not occur. Addition of IR kinase purified from human placenta to these PYPs restored insulin-dependent tyrosine phosphorylation of pp185. These results suggest that tyrosine phosphorylation of pp185 is catalyzed directly by IR kinase in this cell-free system.  相似文献   

20.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号