首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Binding of (3H)-prazosin to adrenoceptors in guinea pig myocardial membranes was rapid, readily reversible, stereospecific and saturable. By Scatchard analysis (n = 6) Bmax was 58 fmol of (3H)-prazosin bound/mg protein and the KD was 0.58 nm. The Hill number was 1.05. Adrenergic agonists competed with (3H)-prazosin as follows: (?)adrenaline > (?)noradrenaline > (?)phenylephrine ? (+)isoprenaline > (+)noradrenaline; antagonists competed in the order: non-radioactive prazosin > phentolamine ? piperoxan > yohimbine > sulpiride > propranolol. The KD for beta-adrenoceptors assessed by (?3H)-dihydroalprenolol was 0.86 nM and the Bmax (96 fmol/mg protein) was almost twice that of alpha-adrenoceptors. (3H)-prazosin appears to be a useful radioligand for the study of post-synaptic (alpha1) adrenoceptors in myocardial tissue.  相似文献   

2.
3H-Yohimbine, a potent and selective pharmacological antagonist of α2-adrenergic receptors, labeled human platelet membrane α2-receptors with high affinity. Binding was rapid and reversible at 25°C. Both saturation and kinetic experiments indicated a single order of binding sites, with an equilibrium KD value of 1.0–1.5 nM. Low Mg2+ concentrations increased the KD for 3H-yohimbine without altering the Bmax. The 3H-yohimbine site exhibited α2-receptor specificity: (?)-norepinephrine and (?)-isoproterenol were 4.8 and 330 times less potent than (?)-epinephrine; (?)-catecholamines were 17–35 times more potent than corresponding (+)-catecholamines; the selective α1-antagonist prazosin was 340 times less potent than yohimbine. Catecholamine agonists exhibited shallow curves in inhibiting 3H-yohimbine binding, with pseudo-Hill coefficients (nH) of less than 1.0, whereas the nH of antagonists was 1.0. No specific binding of 3H-prazosin to platelet membranes was observed, indicating the absence of α1-receptors. 3H-Yohimbine labeled fewer platelet sites than did 3H-dihydroergocryptine under identical conditions (80 vs 130 receptors/ cell), and may be a more specific and useful antagonist probe of platelet α2-receptors than 3H-dihydroergocryptine.  相似文献   

3.
The binding characteristics of the α-component of (?)-[3H]norepinephrine to hamster adipocyte membranes were studied. Binding was rapid, reaching equilibrium in 20 min at 25°C. Dissociation of specific binding by 10 μM phentolamine suggested dissociation from two different sites. The time course of dissociation induced by a 50-fold dilution was unchanged by the addition of norepinephrine, suggesting the absence of cooperative binding sites. [3H]norepinephrine binding was saturable, yielding curvilinear Scatchard plots. Computer modeling of these data further supported the existence of two classes of binding sites, one with high affinity (D = 23 nM) but low binding capacity (96 fmol/mg protein) and one with low affinity (KD = 400 nM) but high binding capacity (1000 fmol/mg protein). Adrenergic ligands of competed with [3H]norepinephrine binding in the following order of potency: (?)-norepinephrine>(?)-epinephrine>>(+)-norepinephrine>(?)-isoproterenol. Displacement by the selective α-adrenergic drugs prazosin, clonidine and yohimbine yielded biphasic curves consistent with binding of [3H]norepinephrine to both α1- (14–22%) and α2- (78–86%) receptor subtypes. Although Gpp(NH)p failed to alter the binding of [3H]dihydroergocryptine, it severely reduced the binding affinity of (?)-epinephrine, (?)-norepinephrine and the selective α2-agonist, clonidine. The inhibitory effects of clonidine and of the α-component of (?)-epinephrine on the adrenocorticotropin-stimulated cyclic AMP production in the intact adipocyte were closely correlated with their effects on the binding of both [3H]norepinephrine and [3H]dihydroergocryptine. Conversely, yohimbine but not prazosin markedly antagonised the α-inhibitory effect of norepinephrine on cyclic AMP production. These data led to concluded that [3H]norepinephrine can be successfully used to study the entire α-adrenergic receptor population of hamster fat cells and that the predominant α2 -receptor subtype exists in two different affinity states for agonists, the proportions of which are modulated by guanine nucleotides.  相似文献   

4.
The binding of specific nonselective α1- and α2-adrenoceptor antagonists [3H]prazosine and [3H]RX821002 has been studied on rat cerebral cortex synaptosomal membranes. It is shown that for α1-adrenoceptors the ligand-receptor interaction corresponds to the model assuming the presence of one pool of receptors and binding of two ligand molecules to the receptor. The parameters of [3H]prazosine binding to α1-adrenoceptors were: K d= 1.56 ± 0.17 nM, B max = 30.25 ± 1.78 fmol/mg protein, n = 2. The parameters of [3H]RX821002 binding to α2-adrenoceptors were: K d = 1.94 ± 0.08 nM, B max = 12.77 ± 3.17 fmol/mg protein, n = 2. For α2 -adrenoceptors the ligand-receptor interaction corresponded to the same model. For α1 - and α2-adrenoceptor antagonists the dissociation constants (K d) are approximately equal (1.56 ± 0.17 and 1.94 ± 0.08 nM, respectively), but the concentration of α2-adrenoceptors is two times lower than that of α1-adrenoceptors ( 12.77 ± 3.17 and 30.25 ± 1.78 fmol/mg protein, respectively). The efficiency (E = B max/2K d) of the ligand binding to α1-adrenoceptors is 2.3 times higher than that to α2-adrenoceptors (7.46 ± 1.32 and 3.29 ± 0.68 fmol/mg protein/nM, respectively. The data suggest that α1- and α2 -adrenoceptors in rat cerebral cortex exist as dimers.  相似文献   

5.
(±)-[3H]Epinephrine and (?)-[3H]norepinephrine bind saturably to calf cerebral cortex membranes under appropriate incubation conditions in a fashion indicating that they label α-noradrenergic receptors. Binding of the two [3H]catecholamines is saturable with dissociation constants of 20–30 nM. Binding is stereoselective with (?)-norepinephrine displaying about twenty times greater affinity than (+)-norepinephrine. The relative potencies of catecholamines in competing for these binding sites parallels their relative pharmacologic effects at α-noradrenergic receptors in numerous tissues. Thus, (?)-epinephrine is 2–3 times more potent than (?)-norepinephrine and 500 times more potent than (?)-isoproterenol. Binding is inhibited by low concentrations of the α-antagonists phentolamine and phenoxybenzamine but not by the β-antagonist propranolol.  相似文献   

6.
The influence of β-adrenoceptor activation and inhibition by isoprenaline and propranolol on the specific binding of nonselective α1- and α2-adrenoceptor antagonists [3H]prazosin and [3H]RX821002 in rat cerebral cortex subcellular membrane fractions was studied. It was established that for the α1- and α2-adrenoceptors the ligand–receptor interaction corresponds to the model of one affinity pool of receptors and binding of two ligand molecules by one dimer receptor. The parameters of [3H]prazosin binding to α1-adrenoceptors were: K d = 1.85 ± 0.16 nM, B max = 31.14 ± 0.35 fmol/mg protein, n = 2. The parameters of [3H]RX821002 binding to α2-adrenoceptors were: K d = 1.57 ± 0.27 nM, B max = 7.2 ± 1.6 fmol/mg protein, n = 2. When β-adrenoceptors were activated by isoprenaline, the binding of radiolabelled ligands with α1- and α2-adrenoceptors occurred according to the same model. The affinity to [3H]prazosin and the concentration of active α1-adrenoceptors increased by 27% (K d = 1.36 ± 0.03 nM) and 84% (B max = 57.37 ± 0.28 fmol/mg protein), respectively. The affinity of α2-adrenoceptors to [3H]RX821002 decreased by 56% (K d = 3.55 ± 0.02 nM), and the concentration of active receptors increased by 69% (B max = 12.24 ± 0.06 fmol/mg protein). Propranolol alters the binding character of both ligands. For [3H]prazosin and [3H]RX821002, two pools of receptors were detected with the following parameters: K d1 = 1.13 ± 0.09, K d2 = 6.07 ± 1.06 nM, B m1 = 11.36 ± 1.77, Bm2 = 51.09 ± 0.41 fmol/mg protein, n = 2 and K d1 = 0.61 ± 0.02, K d2 = 3.41 ± 0.13 nM, B m1 = 1.88 ± 0.028, B m2 = 9.27 ± 0.08 fmol/mg protein, n = 2, respectively. The concentration of active receptors (B max) increased twofold for both ligands. It was suggested that α1- and α2-adrenoceptors in rat cerebral cortex subcellular membrane fractions exist as dimers. A modulating influence of isoprenaline and propranolol on the specific binding of the antagonists to α1- and α2- adrenoceptors was revealed, which was manifested in the activating effect on the [3H]prazosin binding parameters, in the inhibitory effect on the [3H]RX821002 binding parameters, and in a change of the general character of binding for both ligands.  相似文献   

7.
In normal subjects beta-adrenergic responsiveness in the cardiovascular system has been shown to be impaired with increasing age. In order to correlate reduced hormonal responsiveness to an age-related defect at the receptor level, high affinity beta-adrenergic receptors in homogenates of human mononuclear leucocytes have been studied with a (?)-3H-dihydroalprenolol (3H-DHA) binding assay. The binding sites have been characterized by rapid kinetics, saturability, structural and sterospecificity. Binding equilibrium was obtained within 16 minutes at 37° and was reversed by 50% within 10.6 minutes. In 22 healthy subjects a binding capacity of 60 ± 8 fmol/mg protein and an equilibrium dissociation constant (KD) of 0.6 ± 0.05 nM was found. Beta-adrenergic agonists displaced 3H-DHA binding with a potency order of isoproterenol > adrenaline > noradrenaline. The (?) isomers of beta-adrenergic agonists and antagonists were one to two orders of magnitude more potent as inhibitors of 3H-DHA binding than their corresponding (+) isomers. The binding capacity and affinity of the beta-adrenergic receptors did not differ in old, as compared to young normal subjects. Leucocytes from 14 individuals 18–40 years old had an average density of 53 ± 4 fmol/mg protein, while the average density in leucocytes from 8 individuals aged 53–65 years was 67 ± 8 fmol/mg protein. The KD was 0.6 ± 0.05 nM in both groups. In conclusion, an age-related decrease of beta-adrenergic receptor-mediated cardiovascular functions does not seem to be reflected in the properties of beta-adrenergic receptors of mononuclear leucocytes.  相似文献   

8.
Abstract

The interactions of the anticoagulant Heparin with the alpha-2-adrenoceptor in rat brain cortex membranes were investigated. Binding experiments with 3H-Clonidine were performed in both the absence and presence of Heparin. 1 uM Na-Heparin caused a significant decrease in the maximal number of binding sites (Bmax) from 129.4 fmol/mg protein to 93.7 fmol/mg protein with an associated decrease in affinity (KD = 0.79 pM vs. KD= 1.53 pM) of these binding sites. Addition of Na+-Heparin to 3H-Clonidine (3.1 nM) labelled membranes inhibited 50% of specific 3H-Clonidine binding (IC50) at a concentration of 0.95 uM. Based on our findings we conclude that the simultaneous long term administration of Na-Heparin and the antihypertensive agonist Clonidine should be regarded under consideration of the inhibitory effect of Na-Heparin to the alpha-2-adrenoceptors.  相似文献   

9.
The binding characteristics of the β-adrenergic agonist (±)-[3H]hydroxybenzylisoproterenol to rat adipocyte membranes were studied. Binding was rapid, reaching equilibrium within 10 min at 37°C (second order rate constant k1=1.37·107·M?1·min?1). Dissociation of specific binding by 0.5 mM (?)-isoproterenol suggested dissociation from two different sites with respective dissociation rate constants k2 of 0.106·min?1 and 0.011·min?1.[3H]Hydroxybenzylisoproterenol binding was saturable (Bmax=690±107 fmol/mg protein), yielding curvilinear Scatchard plots. Computer modeling of these data were consistent with the existence of two classes of [3H]hydroxybenzylisoproterenol binding sites, one having high affinity (KD=3.5±0.7 nM) but low binding capacity (10% of the total sites) and one haveing low affinity (KD=101±20 nM) but high binding capacity (90% of the sites). Adrenergic ligands competed with [3H]hydroxybenzylisoproterenol binding with the following order of potency=(?)-propranolol>(?)-isoproterenol>(?)-norepinephrine≈ (?)-epinephrine>>(+)-isoproterenol=(+)-propranolo, which is consistent with binding to β1-adrenergic receptors. Competition curves of [3H]hydroxybenzylisoproterenol binding by the β-agonist (?)-isoproterenol were shallow and modeled to two affinity states of binding, whereas, competition curves by β-antagonist (?)-propranolol were steeper with Hill number near to one. Gpp[NH]p severely reduced [3H]hydroxybenzyl-isoproterenol binding, an effect which apparently resulted from the reduction of the number of both the high and low affinity sites. In membranes which had been previously exposed to (?)-isoproterenol, then number of [3H]hydroxybenzylisoproterenol binding sites was reduced by 50%, an effect which apparently resulted from the loss of part of both the high and low affinity state binding sites. Finally, the ability of (?)-isoproterenol to stimulate adenylate cyclase correlate closely with the ability of (?)-isoproterenol to displace [3H]hydroxybenzylisoproterenol binding. Comparison of these findings with the binding characteristics of the β-antagonist [3H]dihydroalprenolol to rat adipocyte membranes, led to conclude that [3H]hydroxybenzylisoproterenol can be successfully used to label the β-adrenergic receptors of rat fat cells and suggests that it might be a better ligand than [3H]dihydroalprenolol in these cells.  相似文献   

10.
The effects of activation and inhibition of serotonin receptors by serotonin (5-HT) and mianserin on the specific nonselective α1-antagonist [3H]prazosine binding in rat cerebral cortex membranes was studied. It was shown that the ligand-receptor interaction of α1-adrenoceptors corresponded to the model suggesting the presence of one pool of receptors and the binding of two ligand molecules to the receptor. The parameters of [3H]prazosine binding to α1-adrenoceptors were as follows: K d =1.85 ± 0.16 nM, B max = 31.1 ± 0.3 fmol/mg protein, n = 2. In case of activation of 5HT-receptors by serotonin, the character of ligand binding was different: two pools of receptors were detected with the parameters K d1 = 0.61 ± 0.04, K d2 = 3.82 ± 0.15 nM, B m1 = 6.6 ± 0.7, B m2 = 25.6 ± 0.4 fmol/mg protein, n = 2. The sensitivity of the high-affinity pool increased threefold and the sensitivity of the low-affinity pool decreased twofold as compared to the control. The value of maximal reaction (B max) did not change. In the case of inhibition of 5HT-receptors by mianserin, radioactive ligand is bound to α1-adrenoceptors according to the same model as in the control conditions. The affinity of α1-adrenoceptors to [3H]prazosine decreases twofold and the concentration increases (K d = 3.97 ± 0.12 nM, B max = 40.0 ± 0.5 fmol/mg protein). The data suggest that α1-adrenoceptors in rat cerebral cortex exist as a dimer. The modulatory effects of serotonin and mianserin on the specific binding of [3H]prazosine to α1-adrenoceptors was detected, manifesting itself as changes in the binding parameters and in the general character of ligand-receptor interactions.  相似文献   

11.
Alpha adrenoceptor subtypes have been investigated by radioligand binding study in guinea-pig stomach using 3H-prazosin and 3H-yohimbine. The specific 3H-prazosin binding to guinea-pig stomach was saturable and of high affinity (KD = 1.4 nM) with a Bmax of 33 fmol/mg protein. Specific 3H-yohimbine binding to the tissue was also saturable and of high affinity (KD = 25.5 nM) with a Bmax of 150 fmol/mg protein. Adrenergic drugs competed for 3H-prazosin binding in order of prazosin greater than phentolamine greater than methoxamine greater than norepinephrine greater than clonidine greater than epinephrine greater than yohimbine. These drugs competed for 3H-yohimbine binding in order of yohimbine greater than phentolamine greater than clonidine greater than epinephrine greater than norepinephrine greater than prazosin greater than greater than prazosin greater than methoxamine. We also examined whether dopamine receptors exist in guinea-pig stomach, using radioligand binding study. Specific binding of 3H-spiperone, 3H-apomorphine, 3H-dopamine and 3H-domperidone was not detectable in the stomach. Dopaminergic drugs such as dopamine, haloperidol, domperidone and sulpiride competed for 3H-prazosin binding in order of haloperidol greater than domperidone greater than dopamine greater than sulpiride. Metoclopramide, sulpiride and dopamine competed for 3H-yohimbine binding in order of metoclopramide greater than sulpiride greater than dopamine. These results suggest that guinea-pig stomach has alpha 1 and alpha 2 adrenoceptors and has no specific dopamine receptors. It is also suggested that some dopamine receptor antagonists such as domperidone, haloperidol, sulpiride and metoclopramide have antagonistic actions on alpha adrenoceptors.  相似文献   

12.
Abstract

In order to examine species and tissue differences in α1 adrenoceptors, binding experiments were performed using 3H-prazosin and membrane homogenates of central nervous and peripheral tissues of rabbit (cortex and spleen), and rat (cortex, spleen, and liver). Saturation studies indicated one binding site for 3H-prazosin, with apparent log molar dissociation constants (pKD) ranging from 9.43 to 10.20. The rank orders of affinities of three competing antagonists (prazosin ? idazoxan > rauwolscine) and five agonists (cirazoline > clonidine ~ (-)-norepinephrine > (-)-phenylephrine > (+)-norepinephrine) were typical of α1 receptors in all tissues. There were small but significant differences in the mean affinities of rauwolscine, idazoxan and cirazoline among the five tissues. No significant differences in pseudo-Hill coefficients were observed among tissues, although agonist binding curves were shallow (.7 to.85) and prazosin competition curves were significantly steeper (>.85). Guanine nucleotide did not affect the position or slope of the (-)-norepinephrine competition profile in rat cortex. These results demonstrate a qualitative similarity among central and peripheral α1 receptors of the rat and rabbit, with small differences observed between central and peripheral sites in both species.  相似文献   

13.
[3H]Clonidine, a α-noradrenergic agonist, and [3H]WB-4101, a benzodioxan derivative α-antagonist, bind with high affinity and selectivity to membranes of rat brain in a fashion indicating that they label postsynaptic α-noradrenergic receptors. Binding for both ligands is saturable with KD values of 5 nM and 0.6 nM respectively for clonidine and WB-4101. The relative affinities of a series of phenylethylamines for binding sites corresponds well with their relative influences at α-receptors. Binding of both [3H]-ligands is stereoselective with about a 50 fold preference for (-)-norepinephrine. Of a series of ergot alkaloids, only those with known α-receptor activity have high affinities for the binding sites. Binding does not involve pre-synaptic norepinephrine nerve endings, because after an 80% depletion of endogenous norepinephrine by treatment with 6-hydroxydopamine, no decrease can be detected in [3H]clonidine and [3H]WB-4101 binding. α-Agonists have much higher affinities for [3H]clonidine than [3H]WB-4101 sites, while the reverse holds true for α-antagonists. Mixed agonist-antagonist ergots have similar affinities for binding of the two [3H]ligands. These data suggest that [3H]clonidine and [3H]WB-4101 respectively label distinct agonist and antagonist states of the α-receptor.  相似文献   

14.
[3H]Yohimbine, a potent α2-adrenergic antagonist, was used to label the α2-adrenergic receptors in membranes isolated from human platelets. Binding of [3H]yohimbine to platelet membranes appears to have all the characteristics of binding to α2-adrenergic receptors. Binding reached a steady state in 2–3 min at 37°C and was completely reversible upon the addition of excess phentolamine or yohimbine (both at 10?5 M;t12 = 2.37 min). [3H]Yohimbine bound to a single class of noncooperative sites with a dissociation constant of 1.74 nM. At saturation, the total number of binding sites was calculated to be 191 fmol/mg protein. [3H]Yohimbine binding was stereo-specifically inhibited by epinephrine: the (?) isomer was 11-times more potent than the (+) isomer. Cathecholamine agonists competed for the occupancy of the [3H]yohimbine-binding sites with an order of potency: clonidine > (?)-epinephrine > (?)-norepinephrine >> (?)-isoproterenol. The potent α2-adrenergic antagonist, phentolamine, competed for the sites whereas the β-antagonist, (±)-propanolol, was a very weak inhibitor. 0.1 mM GTP reduced the bindng affinity of the agonists, while producing no change in antagonist-binding affinity. Dopamine and serotonine competed only at very high concentrations. Similarly, muscarinic cholinergic ligands were also poor inhibitors of [3H]yohimbine binding. These results suggest tht [3H]yohimbine binding to human platelet membranes is specific, rapid, saturable, reversible and, therefore, can be successfully used to label α2-adrenergic receptors.  相似文献   

15.
Epinephrine (EPI) is thought to act by stimulating adenylyl cyclase (ACase) and cAMP production through β-adrenoceptors in the liver of more primitive vertebrates. Recent observations, however, point to an involvement of α1-adrenoceptors in EPI action, at least in some fish species. The role of the α1- and β-adrenergic transduction pathways has been investigated in rainbow trout (Oncorhynchus mykiss) hepatic tissue. Radioligand-binding assays with the β-adrenergic antagonist 3H-CGP-12177 using hepatic membranes purified on a discontinuous sucrose gradient confirmed the presence of β-adrenoceptors (Kd0.36 nM, Bmax 8.61 fmol · mg−1 protein). We provide the first demonstration of α1-adrenoceptors in these same membranes; analysis of binding data with the α1-adrenergic antagonist 3H-prazosin demonstrated a single class of binding sites with a Kdof 15.4 nM and a Bmax of 75.2 fmol · mg−1 protein. There is a straight correlation between β-adrenoceptor occupancy, ACase activation and cAMP production. On the contrary, the role of inositol 1,4,5-trisphosphate (IP3) has to be elucidated; in fact, despite the presence of specific microsomal binding sites for IP3 (Kd 6.03 nM, Bmax 90.2 fmol · mg−1 protein), its cytosolic concentration was not modulated by EPI. On the other hand, we have previously shown in American eel and bullhead hepatocytes that α1-adrenergic agonists are able to increase intracellular concentrations of IP3 and Ca2+ and to activate glycogenolysis. These data suggest a marked variation in the liver of different fish both in terms of α1-binding sites affinity and of α1-adrenoceptor/IP3/Ca2+ transduction systems.  相似文献   

16.
A (?)-[3H]norepinephrine binding site was identified in a crude synaptosomal fraction isolated from bovine hypothalamus which bound norepinephrine rapidly, reversibly, and stereospecifically. The results were most consistent with binding of (-)-[3H]norepinephrine to the carrier molecule used to translocate biogenic amines into synaptic vesicles. The binding studies indicated that specific binding of (?)-[3H]norepinephrine to the crude synaptosomal fraction was greatly enhanced by 1 mM MgCl2 and 1 mM ATP. The increased binding of (?)-[3H]norepinephrine also occured in the presence of MgCl2 and GTP, but AMP, adenosine and adenyl-5′-yl imidodiphosphate would not substitute for ATP. Neither CaCl2 nor ZnSO4 could be substituted for the MgCl2. In the presence of MgCl2 and ATP, the dissociation constant for (?)-[3H]norepinephrine was 280 nM with a specific binding site density of 4.8 pmol/mg protein. Binding was stereospecific with ratios of 15, 4, and 6.5 for the affinities of (?)-isomers to (+)-isomers for norepinephrine, epinephrine and isoproterenol, respectively. Drug competition studies, conducted in the presence of Mg2+ and ATP, indicated that (?)-epinephrine, (?)-norepinephrine, dopamine and serotonin had inhibitory constants ranging from 0.25 to 0.8 μM with (?)-isoproterenol and tyramine having inhibitory constants around 2 μM. Reserpine was the most potent inhibitor having an inhibition constant of 8.6 ± 0.3 nM. The binding data were not consistent with the specific site being the α- or β-receptors for norepinephrine, the Uptake1 Site for norepinephrine into synaptosomes or the metabolizing enzymes for norepinephrine.  相似文献   

17.
The influence of activation and inhibition of serotonin receptors by serotonin (5HT) and miancerin on binding of specific nonselective α2-antagonist [3H]RX821002 in rat cerebral cortex membranes was studied. It was shown that the ligand-receptor interaction for α2-adrenoceptors corresponded to the model suggesting the presence of one pool of receptors and binding of two ligand molecules to the receptor. The parameters of the [3H]RX821002 binding to α2-adrenoceptors were as follows: K d = 1.57 ± 0.276 nM, B max = 7.24 ± 1.63 fmol/mg protein, n = 2. In the case of activation of 5HT-receptors by serotonin, the character of ligand binding was different: two pools of receptors were detected with the parameters K d1 = 0.82 ± 0.06; K d2 = 2.65 ± 0.22 nM; B m1 = 1.65 ± 0.23; B m2 = 4.20 ± 0.11 fmol/mg protein; n = 2. The affinity of high-affinity receptors increased twofold and the affininty of low-affinity receptors decreased by 69% as compared to control values. The concentration of high-affinity receptors decreased 4.4-fold, and of low-affinity, 1.7-fold. The value of maximal reaction (B max) decreased by 20%. In the case of miancerin-induced inhibition of 5HT-receptors the character of ligand binding also changed; two pools of receptors were detected with the following parameters: K d1 = 0.48 ± 0.09; K d2 = 3.79 ± 0.71 nM; B 1 = 0.63 ± 0.17; B 2 = 4.75 ± 0.21 fmol/mg protein; n = 2. The affinity of high-affinity receptors pool increased by 70% and that of low-affinity receptors decreased by 76% as compared to control values. The concentration of active high-affinity and low-affinity α2-adrenoceptors decreased by 70% and 141%, respectively. The total amount of the receptors (B max) decreased by 26%. The data suggest that α2-adrenoceptors in rat cerebral cortex exist as dimers. Modulatory effects of serotonin and miancerin on specific antagonist binding to α2-adrenoceptors may be accomplished by altering the character and binding parameters of the nonselective α2-antagonist [3H]RX821002.  相似文献   

18.
β-Adrenergic receptors were identified in membrane fractions of fetal and postnatal rat lung with the β-adrenergic antagonist (?)?[3H] dihydroalprenolol, (?)?[3H] DHA. β-Receptor number (Bmax) increased 11-fold from day 18 of gestation to day 28 of postnatal life, 46±7 to 491±69 femtomole·mg?1 protein. Neither the KD, approximately 0.8nM for [3H]DHA, nor the β-adrenergic subtype changed with age. Classical agonists competed for the β-receptor with properties characteristic of β2-adrenergic binding. Analysis of the inhibition of receptor binding by selective β-adrenergic agents demonstrated approximately 75% β2 and 25% β1 β-adrenergic subtypes in fetal rat lung membranes. The increase in β-adrenergic receptor during development was associated with adenylate cyclase activity which was sensitive to catecholamines at all ages studied, supporting the possible role of the β-adrenergic receptor system in the postnatal regulation of pulmonary function.  相似文献   

19.
Inhibitory and stimulatory adenosine receptors have been identified and characterized in both membranes and intact rat C6 glioma cells. In membranes, saturation experiment performed with [3H]DPCPX, selective A1R antagonist, revealed a single binding site with a K D = 9.4 ± 1.4 nM and B max = 62.7 ± 8.6 fmol/mg protein. Binding of [3H]DPCPX in intact cell revealed a K D = 17.7 ± 1.3 nM and B max = 567.1 ± 26.5 fmol/mg protein. On the other hand, [3H]ZM241385 binding experiments revealed a single binding site population of receptors with K D = 16.5 ± 1.3 nM and B max = 358.9 ± 52.4 fmol/mg protein in intact cells, and K D = 4.7 ± 0.6 nM and B max = 74.3 ± 7.9 fmol/mg protein in plasma membranes, suggesting the presence of A2A receptor in C6 cells. A1, A2A, A2B and A3 adenosine receptors were detected by Western-blotting and immunocytochemistry, and their mRNAs quantified by real time PCR assays. Giα and Gsα proteins were also detected by Western-blotting and RT-PCR assays. Furthermore, selective A1R agonists inhibited forskolin- and GTP-stimulated adenylyl cyclase activity and CGS 21680 and NECA stimulated this enzymatic activity in C6 cells. These results suggest that C6 glioma cells endogenously express A1 and A2 receptors functionally coupled to adenylyl cyclase inhibition and stimulation, respectively, and suggest these cells as a model to study the role of adenosine receptors in tumoral cells.  相似文献   

20.
1. In chicken hepatocytes, α1-adrenoceptor activation increased: (a) phosphatidylinositol labeling; (b) production of inositol trisphosphate; (c) cytosol calcium; and (d) phosphorylase activity.2. Prazosin (Ki ≈ 0.2–0.4 nM) was more potent in inhibiting these actions than 5-methyl-urapidil (Ki ≈ 30–60 nM); these actions were sensitive to chlorethylclonidine suggesting the involvement of α1-adrenoceptors.3. The stimulation of phosphoinositide turnover was insensitive to pertussis toxin.4. In chicken liver membranes, [3H]prazosin binding sites (Bmax 872 fmol/mg protein) with high affinity for prazosin (KD 0.3 nM; Ki 0.4 nM) and lower affinity for 5-methyl-urapidil (Ki 46 nM) were detected, consistent with the presence of α1B-adrenoceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号