首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interspecific somatic hybrids between a dihaploid potato clone H-8105 susceptible to Phytophthora infestans (Mont.) de Bary and a resistant diploid tuberizing species Solanum bulbocastanum were generated and analysed. Only ten regenerants displaying the intermediate morphology with dominating characteristics of the wild parent (simple leaves, anthocyanin pigmentation) were produced in 15 weeks after a single PEG-mediated fusion event. The RAPD patterns confirmed the hybridity of all of them. The hybrids rooted poorly and grew slowly in vitro. The cytological analysis revealed a high degree of aneuploidy in the hybrids with morphological and growth anomalies in vitro, while the morphologically normal hybrids were tetraploids. All the S. bulbocastanum (+) H-8105 hybrids were unstable in culture and three of them were consequently lost during three years of propagation in vitro. The possible reasons for instability of somatic hybrids between the distantly related species are discussed.  相似文献   

2.
Somatic hybrids have been obtained between potato and Solanum bulbocastanum PI 245310, a Mexican diploid (2n=2x=24) species. Through restriction fragment length polymorphism (RFLP) and randomly amplified polymorphic DNA (RAPD) analyses it was found that the somatic hybrids contain each chromosome of the diploid parent and that the synteny of RFLP markers noted with tomato, potato and S. brevidens is largely maintained in S. bulbocastanum. RFLP analyses of BC1 progeny of two different hybrids indicated that a substantial number of markers were either lost or were heterozygous, in marked contrast with results previously noted with S. brevidens. A RAPD map for all 12 chromosomes of S. bulbocastanum was prepared and marker transmission was followed in three BC2 populations. Results with chromosomes 3, 8 and 10 from these populations are compared.  相似文献   

3.
Leaf protoplasts of two wild species, Solanum nigrum var. gigantea (S. ngr gig) and S. bulbocastanum Dun. (S. blb), were electrofused with leaf protoplasts of two diploid potato clones, H-8105 and ZEL-1136, respectively, in order to confer the late blight-resistance from the wild species to the cultivated potato. The S. ngr gig mesophyll (+) H-8105 mesophyll combination resulted in regenerants of mostly normal ngr phenotype. Two regenerants from this combination were proved to be true hybrids by RAPD analysis but they rooted poorely in vitro and did not survive the transfer to soil. The S. ngr gig (+) H-8105 fusion combination was also performed with H-8105 cell suspension derived protoplasts enabling an easy identification of interspecific fusants on basis of their intermediate morphology. From the S. ngr gig mesophyll (+) H-8105 cultured cell combination, many abnormal shoots were regenerated. The two lines which survived had normal ngr phenotype but the presence of tuberosum (tbr) genome in those regenerants was not confirmed by RAPD analysis. No plants with tbr phenotype were obtained from both of S. ngr gig (+) H-8105 combinations. On the contrary, when S. blb mesophyll protoplasts were electrofused with ZEL-1136 mesophyll protoplasts, all regenerated plants had tbr phenotype, indicating much lower morphogenetic potential of S. bulbocastanum in comparison with that of S. nigrum var. gigantea. However, the hybridity of those regenerants has not been confirmed by RAPD analysis with two different primers. The efficiency of the applied fusion procedure and analysis of the regenerants is discussed.  相似文献   

4.
Solanum acaule Bitt., a wild potato species, is closely related to cultivated potato (Solanum. tuberosum L.). Incorporation of desirable traits from allotetraploid [2n=4x=48, 2 endosperm balance number (EBN)] S. acaule (acl) into autotetraploid (2n=4x=48, 4EBN) S. tuberosum (tbr) is difficult due to incongruity boundaries. In this study, three hybrid combinations, each with a specific genome constitution, were produced through protoplast fusion: (1) hexaploid 2x acl (+) 4x tbr, (2) tetraploid 2x acl (+) 2x tbr, and (3) hexaploid 4x acl (+) 2x tbr hybrids. In terms of glycoalkaloid aglycones, the hybrids produced demissidine, tomatidine and solanidine, similarly to the S. acaule parental species, but S. tuberosum synthesised only solanidine. Inoculations with Clavibacter michiganensis ssp. sepedonicus (Cms), which is the causal agent of bacterial ring rot in potato, yielded significantly lower total glycoalkaloid aglycone accumulation both in S. acaule plants and in interspecific hybrids in comparison with the corresponding mock-inoculated plants. However, in S. tuberosum the aglycone levels were either higher or unchanged as a result of infection by Cms. To incorporate the desirable traits of the interspecific somatic hybrids into 4EBN S. tuberosum, sexual backcrosses were carried out. The hexaploid 4x acl (+) 2x tbr hybrids with the hypothetical 4EBN showed the greatest capacity to undergo backcrosses with S. tuberosum.  相似文献   

5.
Somatic hybrids between potato and Solanum bulbocastanum, a wild diploid (2n=2x=24) Mexican species, are highly resistant to late blight, caused by Phytophthora infestans. Both randomly amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers that are closely linked to the resistance have been noted by analysis of three different backcross-2 populations derived from two different somatic hybrids. With reference to previously published potato and tomato maps, resistance appears to be on the long arm of chromosome 8 and is flanked by RFLP markers CP53 and CT64. In a population of BC2 plants derived from a cross between the BC1 line J10lK6 [(S. tuberosum PI 203900+S. bulbocastanum PI 243510) ×Katahdin)]×Atlantic, late blight resistance cosegregated with RFLP marker CT88 and RAPD marker OPG02–625. Received: 26 November 1999 / Accepted: 22 December 1999  相似文献   

6.
Summary The order of fourteen polymorphic markers localised to the long arm of human chromosome 19 has been established by multipoint mapping in a set of 40 CEPH (Centre d'Étude de Polymorphisme Humain, Paris) reference families. We report here the linkage relationship of the myotonic dystrophy (DM) locus to twelve of these markers as studied in 45 families with DM. The resulting genetic map is supported by the localisation of the DNA markers in a panel of somatic cell hybrids. Ten of the twelve markers have been shown to be proximal to the DM gene and two, PRKCG and D19S22, distal but at distances of approximately 25 cM and 15 cM, respectively. The closest proximal markers are APOC2 (apolipoprotein C-II) and CKM (creatine kinase, muscle) approximately 3 cM and 2 cM from the DM gene respectively, in the order APOC2-CKM-DM. The distance between APOC2, CKM and DM (of the order of 2 million base pairs) and their known orientation should permit directional chromosome walking and jumping. The data presented here should enable us to determine whether or not new markers are distal to APOC2/CKM and thus potentially flank the DM gene.  相似文献   

7.
Five intervals in the pericentromeric region of human chromosome 10 have been defined using a panel of somatic cell hybrids carrying portions of the chromosome. The map positions of twelve markers, consisting of four genes and eight anonymous DNA segments, have been localized by assignment to one of the five intervals. Several other markers could be placed in specific intervals by genetic linkage to assigned loci. When previously published data are incorporated, the summary map of the pericentromeric region encompasses thirty-two loci in bands 10p11.2-q11.2.  相似文献   

8.
The necessity to develop potato and tomato crops that possess durable resistance against the oomycete pathogen Phytophthora infestans is increasing as more virulent, crop-specialized and pesticide resistant strains of the pathogen are rapidly emerging. Here, we describe the positional cloning of the Solanum bulbocastanum-derived Rpi-blb2 gene, which even when present in a potato background confers broad-spectrum late blight resistance. The Rpi-blb2 locus was initially mapped in several tetraploid backcross populations, derived from highly resistant complex interspecific hybrids designated ABPT (an acronym of the four Solanum species involved:S. acaule, S. bulbocastanum, S. phureja and S. tuberosum), to the same region on chromosome 6 as the Mi-1 gene from tomato, which confers resistance to nematodes, aphids and white flies. Due to suppression of recombination in the tetraploid material, fine mapping was carried out in a diploid intraspecific S. bulbocastanum F1 population. Bacterial artificial chromosome (BAC) libraries, generated from a diploid ABPT-derived clone and from the resistant S. bulbocastanum parent clone, were screened with markers linked to resistance in order to generate a physical map of the Rpi-blb2 locus. Molecular analyses of both ABPT- and S. bulbocastanum-derived BAC clones spanning the Rpi-blb2 locus showed it to harbor at least 15 Mi-1 gene homologs (MiGHs). Of these, five were genetically determined to be candidates for Rpi-blb2. Complementation analyses showed that one ABPT- and one S. bulbocastanum-derived MiGH were able to complement the susceptible phenotype in both S. tuberosum and tomato. Sequence analyses of both genes showed them to be identical. The Rpi-blb2 protein shares 82% sequence identity to the Mi-1 protein. Significant expansion of the Rpi-blb2 locus compared to the Mi-1 locus indicates that intrachromosomal recombination or unequal crossing over has played an important role in the evolution of the Rpi-blb2 locus. The contrasting evolutionary dynamics of the Rpi-blb2/Mi-1 loci in the two related genomes may reflect the opposite evolutionary potentials of the interacting pathogens.  相似文献   

9.
A new panel of cytogenetically characterized pig–rodent somatic cell hybrids was constructed and tested for twelve microsatellite markers with PCR. Cytogenetic characterization of hybrids was accomplished by fluorescence painting and GTG-banding of metaphase chromosomes. The panel consists of 15 independent pig–hamster and 6 independent pig–mouse cell lines. In the panel, all pig autosomes and the X Chromosome (Chr) are represented, and it is informative for all chromosome pairs except 2–14, 2–15, 3–9, 14–15, 14–16, and 16–17. The microsatellites tested were S0022, S0023, S0084, S0098, S0112, S0113, S0114, S0115, S0117, S0118, S0119, and S0120. The PCR results obtained in the 21 hybrids were compared with the cytogenetic data and analyzed for concordancy and correlation. Eight microsatellites could be assigned to specific pig chromosomes, confirming seven assignments based on linkage analysis. Received: 25 September 1995 / Accepted: 11 December 1995  相似文献   

10.
Solanum bulbocastanum, a wild, diploid (2n=2x=24) Mexican species, is highly resistant to Phytophthora infestans, the fungus that causes late blight of potato. However this 1 EBN species is virtually impossible to cross directly with potato. PEG-mediated fusion of leaf cells of S. bulbocastanum PI 245310 and the tetraploid potato line S. tuberosum PI 203900 (2n=4x=48) yielded hexaploid (2n= 6x=72) somatic hybrids that retained the high resistance of the S. bulbocastanum parent. RFLP and RAPD analyses confirmed the hybridity of the materials. Four of the somatic hybrids were crossed with potato cultivars Katahdin or Atlantic. The BC1 progeny segregated for resistance to the US8 genotype (A-2 mating type) of P. Infestans. Resistant BC1 lines crossed with susceptible cultivars again yielded populations that segregated for resistance to the fungus. In a 1996 field-plot in Wisconsin, to which no fungicide was applied, two of the BC1 lines, from two different somatic hybrids, yielded 1.36 and 1.32 kg/plant under a severe late-blight epidemic. In contrast, under these same conditions the cultivar Russet Burbank yielded only 0.86 kg/plant. These results indicate that effective resistance to the late-blight fungus in a sexually incompatible Solanum species can be transferred into potato breeding lines by somatic hybridization and that this resistance can then be further transmitted into potato breeding lines by sexual crossing. Received: 27 October 1997 / Accepted: 11 November 1997  相似文献   

11.
A linkage map for European hazelnut (Corylus avellana L.) was constructed using random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers and the 2-way pseudotestcross approach. A full-sib population of 144 seedlings from the cross OSU 252.146 x OSU 414.062 was used. RAPD markers in testcross configuration, segregating 1:1, were used to construct separate maps for each parent. Fifty additional RAPD loci were assigned to linkage groups as accessory markers whose exact location could not be determined. Markers in intercross configuration, segregating 3:1, were used to pair groups in one parent with their homologues in the other. Eleven groups were identified for each parent, corresponding to the haploid chromosome number of hazelnut (n = x = 11). Thirty of the 31 SSR loci were able to be assigned to a linkage group. The maternal map included 249 RAPD and 20 SSR markers and spanned a distance of 661 cM. The paternal map included 271 RAPD and 28 SSR markers and spanned a distance of 812 cM. The maps are quite dense, with an average of 2.6 cM between adjacent markers. The S-locus, which controls pollen-stigma incompatibility, was placed on chromosome 5S where 6 markers linked within a distance of 10 cM were identified. A locus for resistance to eastern filbert blight, caused by Anisogramma anomala, was placed on chromosome 6R for which two additional markers tightly linked to the dominant allele were identified and sequenced. These maps will serve as a starting point for future studies of the hazelnut genome, including map-based cloning of important genes. The inclusion of SSR loci on the map will make it useful in other populations.  相似文献   

12.
In an effort to characterize genes expressed in the cerebellum, we have isolated two cDNA clones, H11B (D16S286) and 507 (D5S344), that hybridized to a cerebellar cDNA probe. Using a panel of human-rodent somatic cell hybrids, cDNA clone H11B was mapped to human chromosome 16, and clone 507 was mapped to human chromosome 5. TaqI RFLPs were identified with both clones and were used for linkage analysis in the CEPH families. D16S286 was tightly linked to several markers near chromosome 16p13, and D5S344 was tightly linked to several markers on chromosome 5q. Sequence tagged sites or expressed sequence tags were generated from the 3' untranslated regions of both cDNA clones.  相似文献   

13.
The channel catfish ( Ictalurus punctatus ) has become the most important aquaculture species in the USA. A genetic linkage map in catfish is needed to improve efficiency of breeding by marker-assisted selection (MAS) and for identification of economically important genes such as disease resistance genes. To identify DNA-based genetic polymorphism, the present authors tested 42 randomly amplified polymorphic DNA (RAPD) primers for their utility in identifying genetic polymorphism in catfish. Out of these primers, 22 generated 171 highly reproducible RAPD markers, producing almost eight polymorphic bands per primer. The remaining 20 primers produced an additional 20 polymorphic bands. The RAPD markers were highly reproducible, transmitted to F1 hybrids, and segregated in F2 or backcross progeny in ratios that did not differ from Mendelian expectations. Because the interspecific hybrids of channel catfish and blue catfish are fertile, RAPD markers using the interspecific hybrid system will be useful for rapid construction of genetic linkage maps of catfish and for analysis of important quantitative trait loci.  相似文献   

14.
Linkage mapping of human chromosome 10 microsatellite polymorphisms.   总被引:3,自引:0,他引:3  
R A Decker  J Moore  B Ponder  J L Weber 《Genomics》1992,12(3):604-606
Ten microsatellite DNA polymorphisms located on human chromosome 10 were regionally mapped using subchromosomal somatic cell hybrids and linkage analysis. The resulting order of the markers from pter-qter was [D10S89, D10S111], D10S107, D10S109, [D10S91, D10S110, D10S108, D10S88, D10S168], and D10S169. Order of the markers within brackets was uncertain, although the order given was most likely. The microsatellites were distributed along the chromosome from the proximal p arm to near qter, with an unlinked gap between D10S168 and D10S169.  相似文献   

15.
We have used a panel of somatic cell hybrids containing different rearrangements of human chromosome 13 to integrate genetic and physical maps of this chromosome. The positions of 17 translocation/deletion breakpoints on human chromosome 13 have been determined relative to the microsatellite markers on the genetic linkage map compiled by Généthon. Because markers on maps from several other Consortium groups have also been analyzed using many of the same hybrids, it was possible to relate these with the Généthon map. The position of all of the chromosome breakpoints have been placed, wherever possible, between two adjacent markers on the genetic linkage maps using PCR analysis for the presence/absence of the markers in the somatic cell hybrids. The positions of the breakpoints have already been determined cytogenetically, and some of these breakpoints are located at landmark positions on the chromosome. The relative density of markers along the chromosome differs between independently derived maps, and, based on the known locations of certain breakpoints in the physical map, inconsistencies in the genetic maps have been identified.  相似文献   

16.
Z Wang  J L Weber 《Genomics》1992,13(3):532-536
Nine moderately to highly informative short tandem repeat polymorphisms were assigned to chromosome 14 using somatic cell hybrids and were mapped using linkage analysis. The nine markers formed a continuous linkage map covering almost the entire long arm from 14q11.2 to q32. The markers filled a large gap within previously reported linkage maps for this chromosome. Best order of the new loci from q11.2 to q32 was D14S50, D14S54, D14S49, D14S47, D14S52, D14S53, D14S55, D14S48, and D14S51. The order shown for all adjacent pairs of loci was very strongly favored with the exception of loci pair D14S55 and D14S48, for which the order was moderately favored. Map lengths for the nine loci were 142 cM in females and 72 cM in males. Female recombination frequencies exceeded male recombination frequencies in the middle and distal portions of the map.  相似文献   

17.
To gain insight into the nature of hemizygosity in Chinese hamster ovary (CHO) cells and the mechanisms by which it has arisen, we are attempting to map and determine linkage relationships for as many hemizygous loci as possible. In this study, we have shown by segregation analysis of intraspecific somatic cell hybrids that the hemizygous gene locus associated with resistance to methylglyoxalbisguanyl hydrazone (MBG) in CHO cells is linked to the hemizygous IDH2 locus on chromosome Z3. Nine of the ten autosomal hemizygous gene loci that have been mapped to date in CHO cells are clustered on three chromosomes, with five such markers on chromosome 2, two on chromosome 8, and now two on the Z3 chromosome. With the mapping of MBG to the Z3 chromosome, selectable drug resistance markers are now available on eight different CHO chromosomes.  相似文献   

18.
Solanum brevidens is a wild diploid potato species possessing high levels of resistances to several major potato diseases. We previously developed fertile somatic hybrids between S. brevidens and the cultivated potato (Solanum tuberosum) in order to introgress disease resistances from this wild species into potato. A series of backcross progenies was developed from a hexaploid somatic hybrid A206. Using a combination of S. brevidens-specific randomly amplified polymorphic DNA (RAPD) markers and a sequential genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) technique, we identified all 12 S. brevidens chromosomes in the backcross progenies. Seven potato-S. brevidens monosomic chromosome addition lines (chromosomes 1, 3, 4, 5, 8, 9 and 10) and one monosomic substitution line (chromosome 6) were identified, and the remaining four S. brevidens chromosomes (2, 7, 11, and 12) were included in two other lines. These chromosomal addition/substitution stocks provide valuable tools for potato cytogenetic research, and can be used to introgress disease resistances from S. brevidens into potato.  相似文献   

19.
Employing 16 polymorphic DNA markers as well as the chromosome 19 centromere heteromorphism, we have performed a genetic linkage study in 26 families with myotonic dystrophy. Fourteen of these markers had been assigned previously to one of five different intervals of the 19cen-19q13.2 segment by using somatic cell hybrids. For the long arm of chromosome 19, a genetic map that encompasses 9 polymorphic markers and the DM gene has been constructed. Our studies indicate that the DM and CKMM genes map distal to the ApoC2-ApoE gene cluster and to the anonymous polymorphic markers D19S15 and D19S16, but proximal to the D19S22 marker. The orientation of DM and CKMM remains to be determined.  相似文献   

20.
Interspecific potato somatic hybrids between Solanum tuberosum L. (di)haploid C-13 and 1 endosperm balance number non-tuberous wild species S. etuberosum Lindl. were produced by protoplasts electrofusion. The objective was to transfer virus resistance from this wild species into the cultivated potatoes. Post-fusion products were cultured in VKM medium followed by regeneration of calli in MS13 K medium at 20°C under a 16-h photoperiod, and regenerants were multiplied on MS medium. Twenty-one somatic hybrids were confirmed by RAPD, SSR and cytoplasm (chloroplast/mitochondria) type analysis possessing species-specific diagnostic bands of corresponding parents. Tetraploid nature of these somatic hybrids was determined through flow cytometry analysis. Somatic hybrids showed intermediate phenotypes (plant, leaves and floral morphology) to their parents in glass-house grown plants. All the somatic hybrids were male-fertile. ELISA assay of somatic hybrids after artificial inoculation of Potato virus Y (PVY) infection reveals high PVY resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号