首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wnt signaling has been reported to block apoptosis and regulate differentiation of mesenchymal progenitors through inhibition of glycogen synthase kinase 3 and stabilization of beta-catenin. The effects of Wnt in preadipocytes may be mediated through Frizzled (Fz) 1 and/or Fz2 as these Wnt receptors are expressed in preadipocytes and their expression declines upon induction of differentiation. We ectopically expressed constitutively active chimeras between Wnt8 and Fz1 or Fz2 in preadipocytes and mesenchymal precursor cells. Our results indicated that activated Fz1 increases stability of beta-catenin, inhibits apoptosis, induces osteoblastogenesis, and inhibits adipogenesis. Although activated Fz2 does not influence apoptosis or osteoblastogenesis, it inhibits adipogenesis through a mechanism independent of beta-catenin. An important mediator of the beta-catenin-independent pathway appears to be calcineurin because inhibitors of this serine/threonine phosphatase partially rescue the block to adipogenesis caused by Wnt3a or activated Fz2. These data supported a model in which Wnt signaling inhibits adipogenesis through both beta-catenin-dependent and beta-catenin-independent mechanisms.  相似文献   

2.
The effects of epidermal growth factor (EGF) and transforming growth factor beta (TGF beta) on the growth of A431 epidermoid carcinoma cells were studied. Whereas the monolayer growth of A431 cells was inhibited by EGF, it was stimulated by TGF beta. Contrary to the effects on the monolayer growth, EGF stimulated the soft agar growth of A431 cells. The stimulatory effects of TGF beta on the anchorage-dependent growth were antagonized by EGF and those of EGF on anchorage-independent growth were antagonized by TGF beta. These results suggest that both factors not only convey the proliferative signals to A431 cells but also induce phenotypic changes, resulting in a preference for either anchorage-dependent or anchorage-independent growth. Moreover, as the stimulatory effects of EGF on the soft agar growth of A431 cells paralleled its reported stimulatory effects on their in vivo growth, it is also suggested that in vivo responses of cells to certain growth factors may correlate better with their responses in soft agar culture than with those in monolayer culture.  相似文献   

3.
This report describes the effects of epidermal growth factor (EGF) and transforming growth factor-beta 1 (TGF-beta 1) on the anchorage-dependent and -independent growth of rat heart endothelial cells (RHE-1A). When RHE-1A cells were grown in monolayer culture with medium containing 10% fetal bovine serum (FBS) supplemented with epidermal growth factor (0.1-100 ng/ml), growth was stimulated fivefold when compared to that of cells grown in medium containing 10% FBS alone. The stimulatory effect of EGF on RHE-1A cell monolayer growth was dose-dependent and half-maximal at 5 ng/ml. The addition of TGF-beta 1 in the range 0.1-10 ng/ml had no effect on RHE-1A cell monolayer growth when added to medium containing 10% FBS alone or 10% FBS supplemented with EGF (50 ng/ml). RHE-1A cells failed to grow under anchorage-independent conditions in 0.3% agar medium containing 10% FBS. In the presence of EGF, however, colony formation increased dramatically. The stimulatory effect of EGF was dose-dependent in the range 0.1-100 ng/ml and was half-maximal at 5 ng/ml. In contrast to its effects under anchorage-dependent conditions, TGF-beta 1 (0.1-10 ng/ml) antagonized the stimulatory effects of EGF on RHE-1A cell anchorage-independent growth. The inhibitory effect of TGF-beta 1 was dose-dependent and half-maximal at 0.1 ng/ml. EGF-induced RHE-1A soft agar colonies were isolated and reinitiated in monolayer culture. They retained the cobblestone morphology and contact-inhibition characteristic of normal vascular endothelial cells. Each of the clones continued to express Factor VIII antigen. These findings suggest that TGF-beta may influence not only endothelial cell proliferation but also anchorage dependence. These effects may in turn be of relevance to endothelial cell growth and angiogenesis in vivo.  相似文献   

4.
Plant epidermal cells are morphologically diverse, differing in size, shape, and function. Their unique morphologies reflect the integral function each cell performs in the organ to which it belongs. Cell morphogenesis involves multiple cellular processes acting in concert to create specialized shapes. The Arabidopsis epidermis contains numerous cell types greatly differing in shape, size, and function. Work on three types of epidermal cells, namely trichomes, root hairs, and pavement cells, has made significant progress towards understanding how plant cells reach their final morphology. These three cell types have highly distinct morphologies and each has become a model cell for the study of morphological processes. A growing body of knowledge is creating a picture of how endoreduplication, cytoskeletal dynamics, vesicle transport, and small GTPase signalling, work in concert to create specialized shapes. Similar mechanisms that determine cell shape and polarity are shared between these cell types, while certain mechanisms remain specific to each.  相似文献   

5.
To elucidate the mode of action of dominant mutant connexins in causing inherited skin diseases, transgenic mice were produced that express the true Vohwinkel syndrome-associated mutant Cx26 (D66H), from a keratin 10 promoter, specifically in the suprabasal epidermal keratinocytes. Following birth, the transgenic mice developed keratoderma similar to that of human carriers of Cx26 (D66H). Expression of the transgene resulted in a loss of Cx26 and Cx30 at intercellular junctions of epidermal keratinocytes and accumulation of these connexins in the cytoplasm. Injection of primary mouse keratinocytes with Lucifer Yellow showed no difference in terms of dye spreading between transgenic and non transgenic keratinocytes in vitro. Expression of the mutant Cx26 (D66H) did not interfere with the formation of the epidermal water barrier during late embryonic development. Attempts to produce transgenic mice expressing the wild type form of Cx26 from the K10 promoter failed to produce viable animals although transgenic embryos were recovered at days 9 and 12 of gestation, suggesting that the transgene might be embryonic lethal.  相似文献   

6.
The effects of interferon on epidermal growth factor action   总被引:5,自引:0,他引:5  
Epidermal growth factor-stimulated thymidine incorporation in human fibroblasts is inhibited more than 80% by human interferon, whereas the stimulation of α-aminoisobutyrate uptake is unaffected. Maximum inhibition of thymidine incorporation is observed after treatment of cells with interferon prior to the onset of DNA synthesis. However, even after the initiation of DNA synthesis, interferon rapidly blocks any further increase in thymidine incorporation. Despite these effects, interferon treatment causes no alterations in epidermal growth factor binding, receptor downregulation or receptor reappearance.  相似文献   

7.
Prostaglandin E1 (PGE1), a component in the hormone-supplemented, serum-free medium for the Madin Darby canine kidney (MDCK) cell line, has been proposed to increase MDCK cell growth by increasing intracellular cyclic AMP levels. The association between increased intracellular cyclic AMP and the growth stimulatory effect of PGE1 has been examined in normal MDCK cells and in PGE1-independent variants of MDCK. These variant cells have lost the PGE1 requirement for long term growth in defined medium. Normal MDCK cells had almost twofold higher intracellular cyclic AMP levels during growth in Medium K-1 (9.0 pmol/mg protein) than in Medium K-1 minus PGE1. Furthermore, PGE1-independent clone 1 had higher intracellular cyclic AMP levels in Medium K-1 minus PGE1 than normal MDCK cells in Medium K-1. This latter observation suggests that the PGE1 requirement for MDCK cell growth is associated with the low intracellular cyclic AMP levels of this cell line. An involvement of cyclic AMP in the growth response to PGE1 is supported by these observations, as well as by the growth stimulatory effects of other agents that affect cyclic AMP metabolism in MDCK cells. These agents include glucagon, isobutyl methylxanthine (IBMX), and dibutyryl cyclic AMP. The growth of PGE1-independent clone 1 was inhibited rather than stimulated by PGE1. Similarly, PGE1-independent cell growth was inhibited by IBMX and dibutyryl cyclic AMP. However, the growth response to one agent which increases cyclic AMP (glucagon) was retained in PGE1-independent clone 1. This result suggests that the effect of glucagon is not associated with increases in intracellular cyclic AMP. The growth stimulatory effect of epidermal growth factor (EGF) on normal MDCK cells was also studied. Although EGF does not act via a cyclic AMP-mediated mechanism, EGF increased normal MDCK cell growth and substituted for PGE1 in Medium K-1. Thus, EGF and PGE1 could possibly affect similar growth-related functions in MDCK cells, although by different pathways. This possibility was examined further, using PGE1-independent clone 1. EGF, like glucagon, was still growth stimulatory to the PGE1-independent cells. Consequently, the biochemical pathways by which EGF and PGE1 increase MDCK cell growth probably do not converge.  相似文献   

8.
Role of integrins in regulating epidermal adhesion,growth and differentiation   总被引:33,自引:0,他引:33  
Watt FM 《The EMBO journal》2002,21(15):3919-3926
Mammalian epidermis is renewed throughout life by proliferation of a multipotential stem cell population and terminal differentiation of stem cell progeny. In recent years, extracellular matrix receptors of the integrin family have been identified as important regulators of epidermal homeostasis, influencing the balance between stem cell renewal and differentiation. Integrin expression is altered when the epidermis is damaged or diseased, and there is good evidence that specific integrins can contribute positively or negatively to pathogenesis. In this review I summarize what is known about the expression and function of epidermal integrins, and highlight the challenges for future research.  相似文献   

9.
A serum-free, hormonally defined medium was developed which supports growth and differentiation in primary culture of epithelial cells from prefusion embryonic mouse palatal shelves. Using this culture system, medial epithelial programmed cell death was investigated. In the absence of EGF, medial epithelial cells undergo cell death and detach from the substratum by 24 hr of culture. The addition of EGF alone or in combination with various agents which increase intracellular cyclic AMP levels prevented medial epithelial cell death in both cell and organ culture. EGF appeared to exert its most dramatic effect in cell culture on growth and differentiation of the squamous oral epithelial cells. In addition, EGF and agents such as 8-bromo-cyclic AMP, dibutyryl cyclic AMP, or cholera toxin synergistically stimulated the appearance of a long-lived, rapidly proliferating cell type by Day 4 of culture. Our results suggest that both EGF and cyclic AMP together may be important in regulating proliferation of embryonic palatal epithelial cells.  相似文献   

10.
11.
Modification of the ionic calcium concentration in the culture medium markedly alters the pattern of proliferation and differentiation in cultured mouse epidermal cells. When medium calcium is lowered to 0.05--0.1 mM, keratinocytes proliferate rapidly with a high growth fraction and do not stratify, but continue to synthesize keratin. The cells grow as a monolayer for several months and can be subcultured and cloned in low Ca++ medium. Ultrastructural examination of cells cultured under low Ca++ conditions reveals widened intercellular spaces, abundant microvilli and perinuclear organization of tonofilaments and cellular organelles. Desmosomes are absent. Epidermal cells growing as a monolayer in low Ca++ can be induced to terminally differentiate by adding calcium to the level normally found in the culture medium (1.2 mM). Cell-to-cell contact occurs rapidly and desmosomes form within 2 hr. The cells stratify by 1--2 days and terminally differentiate with cell sloughing by 3--4 days. After Ca++ addition, DNA synthesis decreases with a lag of 5--10 hr and is totally inhibited within 34 hr. In contrast, RNA and protein synthesis continue at 40--50% of the low Ca++ level at day 3, a time when many cells are detaching from the culture dish. Keratin synthesis is unaffected by the Ca++ switch.  相似文献   

12.
The effect of epidermal growth factor (EGF) on cellular differentiation of the neonatal mouse mandibular incisor was examined autoradiographically using tritiated thymidine ([3H]TDR) and tritiated proline ([3H]PRO). On days 0 (day of birth), 1, and 2, EGF was administered (3 micrograms/g body wt) sc to neonates. Mice were killed on Days 1, 4, 7, 10, and 13 after birth and were injected with either [3H]TDR or [3H]PRO 1 hr before death. [3H]TDR was used to analyze cell proliferation in eight cell types in the developing mouse incisor including upper (lingual) and lower (buccal) pulpal fibroblasts, preodontoblasts, inner and outer enamel epithelial cells (IEE and OEE), stratum intermedium (SI), stellate reticulum (SR), and periodontal ligament (PDL) fibroblasts. [3H]PRO was used to analyze protein synthesis in ameloblasts, and their secretion products (enamel and dentin), as well as PDL fibroblasts. The selected EGF injection scheme elicited acceleration of incisor eruption with minimal growth retardation. At Day 1, the upper and lower pulp, preodontoblasts, SI, and SR showed a significant decrease in labeling index (LI) 24 hr after a single EGF injection. After multiple injections (Days 0, 1, 2), two LI patterns were observed. In lower pulp, preodontoblasts, IEE, SI, SR, and OEE, a posteruptive change in LI was observed. In contrast, the upper pulp and PDL regions demonstrated a direct temporal relationship with eruption. Autoradiographic analysis with [3H]PRO indicated that EGF treatment caused significant increases in grain counts per unit area in ameloblast, odontoblast, and PDL regions studied. Significant differences were found in all four regions studied (ameloblasts, enamel, odontoblasts, dentin) at the 45-microns-tall ameloblast level as well as ameloblasts and odontoblasts at the 30-microns level at 13 days of age. The PDL demonstrated significant differences at all locations studied (base, 30 microns, 45 microns,) in 4-, 7-, and 13-day-old mice. Morphologically, EGF-treated groups demonstrated premature differentiation of ameloblasts and odontoblasts at the light microscopic level. The data indicate that EGF alters DNA and protein synthesis as well as differentiation patterns during the eruption process. While EGF affects both DNA and protein synthesis, the alteration of differentiation may be secondary to mitogenic effects on proliferative compartments. In order to determine the cellular target for EGF within the newborn mouse incisor, in vivo 125I-EGF binding was analyzed autoradiographically.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Shireen Kahai 《FEBS letters》2010,584(1):233-1086
We found that nephronectin was significantly down-regulated by TGF-β1. To determine the function of nephronectin in osteogenesis, we generated various constructs to produce stable MC3T3-E1 cell lines, expressing and secreting nephronectin protein, including full-length (Npnt), lacking EGF-like repeats (Np-MAM), and lacking RGD and MAM domains (Np-EGF). We demonstrated that nephronectin promotes differentiation during osteoblast differentiation and the EGF-like repeats were essential. Lack of these repeats resulted in inhibiting the change in morphology. Over-expression of nephronectin results in earlier formation of bone nodules than the vector control. ERK activation is essential for nephronectin-induced osteoblast differentiation.  相似文献   

14.
Summary Primary cultures of newborn mouse epidermal cells proliferate rapidly and with a high growth fraction for several months when grown in medium with low calcium (0.02 to 0.1 mM). Addition of calcium to levels generally used in culture medium (1.2 mM) was followed by rapid changes in the pattern of proliferation. By using a combination of technics (a stathmokinetic method, autoradiography, [3H]thymidine incorporation into DNA, DNA flow cytometry) it was found that cell flux was blocked for 5 to 6 h, followed by a short rise in the mitotic rate at 10 h, and a gradual fall in all growth parameters until about 32 h after the calcium switch. There was no accumulation of cells in any particular cell cycle phase. The results indicate that the calcium switch is followed by a strong reduction in cell flux from G1 whereas the majority of the cells that had left G1 at the time of the switch completed one cell division before cessation of all proliferative activity. Both before and after the switch the primary epidermal cultures consisted of one diploid and one tetraploid G1 DNA stemline that seemed to react in the same way to calcium. This work reported in this paper was undertaken during the tenure of an American Cancer Society-Eleanor Roosevelt-International Cancer Fellowship awarded by the International Union Against Cancer (K. E.). The project was supported by funds partly provided by the International Cancer Research Data Bank Program of the National Cancer Institute, National Institutes of Health, Bethesda, MD, under contract N01-C0-65341 (International Cancer Research Technology Transfer) and partly by the International Union Against Cancer (O.P.F.C.).  相似文献   

15.
Repair of damaged periodontal ligament (PDL) tissue is an essential challenge in tooth preservation. Various researchers have attempted to develop efficient therapies for healing and regenerating PDL tissue based on tissue engineering methods focused on targeting signaling molecules in PDL stem cells and other mesenchymal stem cells. In this context, we investigated the expression of epidermal growth factor (EGF) in normal and surgically wounded PDL tissues and its effect on chemotaxis and expression of osteoinductive and angiogenic factors in human PDL cells (HPDLCs). EGF as well as EGF receptor (EGFR) expression was observed in HPDLCs and entire PDL tissue. In a PDL tissue-injured model of rat, EGF and IL-1β were found to be upregulated in a perilesional pattern. Interleukin-1β induced EGF expression in HPDLCs but not EGFR. It also increased transforming growth factor-α (TGF-α) and heparin-binding EGF-like growth factor (HB-EGF) expression. Transwell assays demonstrated the chemotactic activity of EGF on HPDLCs. In addition, EGF treatment significantly induced secretion of bone morphogenetic protein 2 and vascular endothelial growth factor, and gene expression of interleukin-8 (IL-8), and early growth response-1 and -2 (EGR-1/2). Human umbilical vein endothelial cells developed well-formed tube networks when cultured with the supernatant of EGF-treated HPDLCs. These results indicated that EGF upregulated under inflammatory conditions plays roles in the repair of wounded PDL tissue, suggesting its function as a prospective agent to allow the healing and regeneration of this tissue.  相似文献   

16.
Abstract Adipocytokines, bioactive molecules secreted from adipose tissues, play important roles in physiology, development, and disease. Recently, heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified as an adipocytokine whose expression correlates with obesity. However, the biological role of fat-secreted HB-EGF is still unclear. In this study, we investigated the effects of HB-EGF on the adipocyte differentiation of C3H10T1/2 pluripotent mesenchymal cells. Upon adipogenic conversion of C3H10T1/2 cells, HB-EGF displayed dynamic changes in expression where an initial decrease was followed by increased levels of expression at later stages. HB-EGF treatment during adipogenic induction inhibited lipid accumulation and decreased the expression of adipocyte molecular markers (fatty acid-binding protein, peroxisome proliferator-activated receptor γ, and CAAT enhancer-binding protein α) and lipogenic genes (glucose transporter, fatty acid synthetase, and lipoprotein lipase). Therefore, HB-EGF has an inhibitory effect on adipocyte differentiation. Administration of HB-EGF at various intervals during adipocyte differentiation revealed that HB-EGF acts during the early stages of adipocyte differentiation, but not at the later stages of differentiation. Furthermore, HB-EGF was able to block the commitment of pluripotent mesenchymal cells to the adipocyte lineage triggered by bone morphogenic protein 4 treatment. These data suggest that HB-EGF acts as a negative regulator of adipogenesis by inhibiting the commitment and early differentiation of the adipose lineage. The inhibitory role of HB-EGF on adipocyte differentiation of pluripotent mesenchymal cells sheds light on potential mechanisms that control adipose tissue homeostasis.  相似文献   

17.
Endometrial tissues undergo drastic changes during menstrual cycle. After menstruation, they proliferate and differentiate into cells with secretory activity in the preparation for egg implantation. Although sex steroids play an important role in the development of endometrial tissues, sequential events occurring in the endometrium can not be fully explained by the direct actions of sex steroids. In this study, we offer evidences that EGF is released from endometrial cells and they possess the receptor for EGF. These findings prompted us to explore the biological roles of EGF in endometrial tissues. Here we clearly demonstrate that EGF is involved in the proliferation of endometrial cells. Moreover, EGF is found to enhance both glycogenesis and glycogenolysis, thus increasing the supply of glucose for blastocysts. We further set forth that EGF augments the capacity of progestin receptor and release of prostaglandins in endometrial cells. In summary, this study emphasizes that EGF may participate in the development of human endometrial tissues in concert with sex steroids, thus contributing to the acquisition of receptivity of eggs in the endometrium.  相似文献   

18.
The rat pheochromocytoma clone PC12 responds to nerve growth factor through the expression of a number of differentiated neuronal properties. One of the most rapid changes is a large, transient increase in the activity of ornithine decarboxylase. These cells also show an increase in ornithine decarboxylase activity in response to the mitogen, epidermal growth factor, but do not respond morphologically as they do to nerve growth factor. Specific, high-affinity epidermal growth factor receptors are present on the cells. When the cells are differentiated with nerve growth factor, the response to epidermal growth factor is markedly diminished and there is a marked reduction in the binding of epidermal growth factor to the cells.  相似文献   

19.
Cell migration is regulated simultaneously by growth factors and extracellular matrix molecules. Although information is continually increasing regarding the relevant signaling pathways, there exists little understanding concerning how these pathways integrate to produce the biophysical processes that govern locomotion. Herein, we report the effects of epidermal growth factor (EGF) and fibronectin (Fn) on multiple facets of fibroblast motility: locomotion speed, membrane extension and retraction activity, and adhesion. A surprising finding is that EGF can either decrease or increase locomotion speed depending on the surface Fn concentration, despite EGF diminishing global cell adhesion at all Fn concentrations. At the same time, the effect of EGF on membrane activity varies from negative to positive to no-effect as Fn concentration and adhesion range from low to high. Taking these effects together, we find that EGF and Fn regulate fibroblast migration speed through integration of the processes of membrane extension, attachment, and detachment, with each of these processes being rate-limiting for locomotion in sequential regimes of increasing adhesivity. Thus, distinct biophysical processes are shown to integrate for overall cell migration responses to growth factor and extracellular matrix stimuli.  相似文献   

20.
Primary keratinocyte cultures free of dermal fibroblasts were used to investigate the effect of varying cyclic AMP (cAMP) concentrations on epidermal cell function. Addition of 10?3, 10?4 or 10?5 M dibutyryl cAMP to plated cells (day 1) results by day 5 in a dose dependent increase of [3H]TdR incorporation into DNA as determined by increases in both the labeling index and incorporation of 3H label into an isolated DNA fraction. 8-Bromo cAMP, another cAMP analogue, likewise induced keratinocyte proliferation. The proliferative response was dose and time dependent, and 5- to 6-fold increases in 3H label incorporated into DNA were seen at day 6, 8 and up until day 15 of culture. Moreover, elevation of cellular cAMP by addition of cholera toxin, an irreversible stimulator of adenylate cyclase, also demonstrated a time dependent stimulation of [3H]TdR uptake into DNA and increased the labeling index. Specific histochemical staining for keratinaceous protein (Kreyberg technique) demonstrated that elevated cAMP levels also enhance the production of specialized (differentiated) epidermal cells. Determination of the level of cAMP and cyclic GMP (cGMP) by RIA of partially purified fractions of the cultures revealed that addition of 8-bromo cAMP or cholera toxin to the cultures increased the levels of cAMP but not of cGMP. Addition of 8-bromo cGMP to the keratinocytes on day 1 at concentrations of 10?6, 10?7 or 10?8 M had no effect on culture proliferation on days 4, 6 and 8, although qualitative changes in the electron microscopic pattern of the culture stratification and specialization were observed. The results indicate (1) both large and moderate increases in cellular cAMP levels induce keratinocyte culture proliferation and specialization in the absence of fibroblasts or dermal influences, (2) the quantitative enhancement of keratinocyte growth and specialization occurs without apparent participation of cGMP, (3) cGMP may be a qualitative effector of epidermal cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号