首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gp91phox subunit of flavocytochrome b558 is the catalytic core of the phagocyte plasma membrane NADPH oxidase. Its activation occurs within lipid rafts and requires translocation of four subunits to flavocytochrome b558. gp91phox is the only glycosylated subunit of NADPH oxidase and no data exist about the structure or function of its glycans. Glycans, however, bind to lectins and this can stimulate NADPH oxidase activity. Given this information, we hypothesized that lectin–gp91phox interactions would facilitate the assembly of a functionally active NADPH oxidase in the absence of lipid rafts. To test this, we used lectins with different carbohydrate-binding specificity to examine the effects on H2O2 generation by human neutrophils treated with the lipid raft disrupting agent methyl-β-cyclodextrin (MβCD). MβCD treatment removed membrane cholesterol, caused changes in cell morphology, inhibited lectin-induced cell aggregation, and delayed lectin-induced assembly of the NADPH oxidase complex. More importantly, MβCD treatment either stimulated or inhibited H2O2 production in a lectin-dependent manner. Together, these results show selectivity in lectin binding to gp91phox, and provide evidence for the biochemical structures of the gp91phox glycans. Furthermore, the data also indicate that in the absence of lipid rafts, neutrophil NADPH oxidase activity can be altered by these select lectins.  相似文献   

2.
To examine the role of divalent cations in the generation of superoxide anion (O2-) by the NADPH oxidase system of phagocytic cells, membrane-rich fractions were prepared from human neutrophils and monocytes. O2- generation by the fractions in sucrose was enhanced by addition of Ca2+ or Mg2+. EDTA inhibited most of the O2- generation; Ca2+ or Mg2+ reversed the inhibition. Zn2+, Mn2+, or Cu2+ completely inhibited O2- production. Neutrophil membrane fraction solubilized with Triton X-100, then passed through a chelating column, lost 80% of its oxidase activity; the loss could be reversed by addition of Ca2+ or Mg2+. Addition of 0.3 mM Ca2+ or Mg2+ protected against thermal instability of the enzyme. Kinetic analysis of the neutrophil oxidase activity as a function of NADPH and Ca2+ or Mg2+ concentrations showed that cation did not interact with NADPH in solution or affect the binding of NADPH to the oxidase; rather, cation bound directly to the oxidase, or to some associated regulatory component, to activate the enzyme. For the neutrophil oxidase, the Km for NADPH was 51 +/- 6 (S.D.) microM. Hyperbolic saturation was observed with Ca2+ and Mg2+, and the Kd values were 1.9 +/- 0.3 and 2.9 +/- 0.3 microM, respectively, suggesting that the oxidase, or some associated component, has a relatively high-affinity binding site for Ca2+ and Mg2+.  相似文献   

3.
Heat shock inhibits NADPH oxidase in human neutrophils   总被引:4,自引:0,他引:4  
The heat shock response is a conserved, physiological, transient cellular response to injury. Several studies have suggested a link between the heat shock response and oxidative injury. We have investigated the effects of heat shock on superoxide anion generation by human neutrophils stimulated with opsonized zymosan or phorbol myristate acetate. Human neutrophils exposed to elevated temperatures or to the heavy metal cadmium synthetized a variety of heat shock proteins. In parallel to this protein synthesis, we observed a selective, reversible and temperature-dependent inhibition of NADPH oxidase activation, which was independent from variations of cytosolic pH or thiol group oxidation. Inhibition of NADPH oxidase by heat shock appeared related to the synthesis of heat shock proteins and may represent an intrinsic cellular mechanism to down regulate superoxide production.  相似文献   

4.
The protein kinase C inhibitor, staurosporine, inhibited NADPH oxidase activity of human neutrophils activated by phorbol myristate acetate. However, this inhibitor had no effect on either the initiation or the maximal rate of O2- secretion activated by the chemotactic peptide, fMet-Leu-Phe, but resulted in a more rapid termination of oxidant production. Similarly, staurosporine had no effect on the rapid (1 min) increase in luminol-dependent chemiluminescence activated by fMet-Leu-Phe, but the second (intracellular) phase of oxidant production was inhibited. The initial burst of oxidant production during phagocytosis was similarly protein kinase C-independent, but again the later phases of oxidase activity were staurosporine-sensitive. Neutrophils loaded with Quin-2 at concentrations sufficient to act as a Ca2+ buffer could not secrete O2- in response to fMet-Leu-Phe; although the initial (protein kinase C-independent) burst of luminol chemiluminescence was not observed in fMet-Leu-Phe-stimulated Ca2(+)-buffered cells, the second phase of (protein kinase C-dependent) oxidant production was largely unaffected. Hence, the initial burst of oxidant production activated by fMet-Leu-Phe, opsonized zymosan, and latex beads is independent of the activity of protein kinase C-dependent intracellular activation processes, but the activity of this kinase is required to extend or sustain the duration of oxidant production.  相似文献   

5.
A major function of human neutrophils (PMN) during inflammation is formation of oxygen radicals through activation of the respiratory burst enzyme, NADPH oxidase. Stimulus-induced production of both phosphatidic acid (PA) and diglyceride (DG) has been suggested to mediate oxidase activity; however, transductional mechanisms and cofactor requirements necessary for activation are poorly defined. We have utilized PMN permeabilized with Staphylococcus aureus alpha-toxin to elucidate the signal pathway involved in eliciting oxidase activity and to investigate whether PA or DG act as second messengers. PMN were permeabilized in cytoplasmic buffer supplemented with ATP and EGTA for 15 min before addition of NADPH and various cofactors. Oxidase activation was assessed by superoxide dismutase inhibitable reduction of ferricytochrome C; PA and DG levels were measured by radiolabeled product formation or by metabolite mass formation. Both superoxide (O2-) and PA formation were initiated by 10 microM GTP gamma S; addition of cytosolic levels of calcium ions (Ca2+, 120 nM) enhanced O2- and PA formation 1.5-2 fold. DG levels showed little change during these treatments. PA formation preceded O2- production and varying GTP gamma S levels had parallel effects on O2- and PA formation. However, while PA formation and oxidase activation occurred in tandem at Ca2+ levels of < 1 microM, higher calcium enhanced PA formation but inhibited O2- production. Removal of ATP completely blocked O2- production but had little effect on PA formation; in contrast, if ATP was replaced with ATP gamma S, parallel production of PA and O2- occurred in the absence of other cofactors. Finally, while inhibition of PA production by ethanol pretreatment led to inhibition of O2- formation in PMN treated with GTP gamma S alone, in cells stimulated with a combination of GTP gamma S and Ca2+, ethanol continued to inhibit PA formation but had no effect on O2- production. Our results do not support a role for DG in the signal transduction path leading to oxidase activation and, while we show a close correlation between oxidase activation and PA production under many physiologic conditions, we also demonstrate that PA is not sufficient to induce oxidase activation and O2- formation can occur when PA production is inhibited.  相似文献   

6.
Calmodulin-dependent stimulation of the NADPH oxidase of human neutrophils   总被引:4,自引:0,他引:4  
The NADPH oxidase of human neutrophils is highly sensitive to calcium concentration and is inhibited in intact cells and cell-free preparations by various phenothiazine drugs. Addition of calmodulin to preparations of NADPH oxidase stimulates enzymatic rates from 1.4-2.5-fold. Addition of calmodulin and calcium, but not calcium alone, to NADPH oxidase preparations which have been inactivated by EDTA results in the restoration of activity. No activation is observed when membrane preparations containing latent NADPH oxidase are exposed to calcium and calmodulin. These studies suggest a role for calmodulin in the control of NADPH oxidase but that calmodulin alone is not sufficient for activation.  相似文献   

7.
The NADPH oxidase of human neutrophils is highly sensitive to calcium concentration and is inhibited in intact cells and cell-free preparations by various phenothiazine drugs. Addition of calmodulin to preparations of NADPH oxidase stimulates enzymatic rates from 1.4–2.5-fold. Addition of calmodulin and calcium, but not calcium alone, to NADPH oxidase preparations which have been inactivated by EDTA results in the restoration of activity. No activation is observed when membrane preparations containing latent NADPH oxidase are exposed to calcium and calmodulin. These studies suggest a role for calmodulin in the control of NADPH oxidase but that calmodium alone is not sufficient for activation.  相似文献   

8.
In the chain of events by which chemotactic peptides stimulate NADPH oxidase-catalyzed superoxide formation in human neutrophils, the involvements of a pertussis toxin-sensitive guanine nucleotide-binding protein (N-protein), mobilization of intracellular calcium and protein kinase C stimulation have been proposed. Superoxide formation was studied in membranes from human neutrophils; NADPH oxidase was stimulated by arachidonic acid in the presence of neutrophil cytosol. Fluoride and stable GTP analogues, such as GTP gamma S and GppNHp, which all activate N-proteins, enhanced NADPH oxidase activity up to 4-fold. GDP beta S inhibited the effect of GTP gamma S. These data suggest that NADPH oxidase is regulated by an N-protein, independent of an elevation of the cytoplasmic calcium concentration.  相似文献   

9.
Partial purification of the cytosolic factors which are required for the activation of O2- producing enzyme (NADPH oxidase) was performed using guinea pig neutrophils. Three active cytosolic factors were obtained by using the combination of IEC-SP (cation-exchange) and IEC-QA (anion-exchange) HPLC. One factor (termed SP-1e which was adsorbed on IEC-SP column, somewhat activated the NADPH oxidase by itself. The molecular weight of SP-1 was estimated to be approximately 260 kDa. In contrast, the other two factors (termed QA-1 and QA-2, respectively), which were adsorbed on IEC-QA column, did not activate the NADPH oxidase by themselves but activated the enzyme only in the presence of SP-1. When three factors were combined, they activated the oxidase synergistically, and the activity recovered was almost the same as that observed with the unfractionated cytosol. These results suggest that at least three different cytosolic factors are required for the full activation of NADPH oxidase in guinea pig neutrophils.  相似文献   

10.
The membrane potential of cytoplasts, derived from human neutrophils, was depolarized by the activation of the superoxide-generating NADPH-dependent oxidase. The extent of the depolarization was inhibited by diphenylene iodonium and was therefore due directly to the activity of the oxidase, which must be electrogenic. The extent of the depolarization was influenced by alteration of the delta pH across the cytoplast membrane, indicating that the outward translocation of H+ eventually compensates for superoxide generation. The depolarization of the potential is enhanced by Cd2+, a blocker of H+ currents, suggesting that the compensatory movement is via an H+ channel.  相似文献   

11.
The aim of this study was to investigate the possible relationship between NADPH oxidase activity and changes in cytosolic Ca2+ in response to different agonists. Treatment of neutrophils with leukotriene B4 (LTB4) demonstrated characteristic changes to cytoslic Ca2+ yielding an EC50 of 4 nM. The pA2 values for the specific LTB4 receptor (BLT) antagonists, U-75302 and LY-255283 were 6.32 and 6.38, respectively. Similarly, neutrophils treated with N-formyl-l-methionyl-l-leucyl-l-phenylalanine (FMLP) and platelet activating factor (PAF) exhibited changes in cytoslic Ca2+ in a dose dependant manner with pD2 values of 9.0 and 9.9, respectively. The phorbol ester PMA prevented elevations in cytosolic Ca2+ in response to LTB4, FMLP and PAF with IC50 values of 5.88, 1.44 and 5.71 nM, respectively. In addition, potent NADPH oxidase inhibitors apocynin and diphenyleneiodonium (DPI) inhibited FMLP mediated cytosolic Ca2+ release. These results demonstrate that inhibition of the NADPH oxidase suppresses cytosolic Ca2+ release in FMLP activated human neutrophils.  相似文献   

12.
We studied the effect of the 2',3'-dialdehyde derivative of NADPH on the activation of superoxide-producing oxidase in a cell-free system of pig neutrophils. The system consisted of a membrane fraction, two cytosolic fractions prepared by gel filtration, and arachidonic acid. Preincubation of one of the cytosolic fractions with the derivatives of NADPH and NADP+ caused the loss of its ability to activate the enzyme. The inactivation was effectively prevented by the addition of NADPH and NADP+. Neither the membrane fraction nor the other cytosolic fraction was affected by the derivatives. The results indicate that the NADPH binding component of the oxidase is present in the cytosolic fraction and may be translocated to the membrane fraction during the activation process in the cell-free system.  相似文献   

13.
We present an up-to-date insight into the function of NADPH oxidase in human neutrophils, the signalling pathways involved in activation of this enzyme and the process of association of its components with the cytoskeleton. We also discuss the functional implications of morphological studies revealing localization of the sites of NADPH oxidase activity. An original model of the process of superoxide (O2*-) production in human neutrophils is shown. Organization of NADPH oxidase is associated with several components. Upon stimulation, tri-phox cytosolic components of NADPH oxidase (p40-phox, p47-phox and p67-phox) bind to actin filaments. This process involves other actin-binding proteins, such as cofilin and coronin. Activated protein kinase C, translocated from the plasma membrane, phosphorylates cytosolic components at a scaffold of cytoskeleton. Subsequently, p40-phox, responsible for maintaining the resting state of NADPH oxidase, is separated from other two cytosolic phox proteins following an attachment of the active form of small GTP-binding protein Rac to p67-phox. Cytosolic duo-phox proteins (p47-phox and p67-phox) conjugate with membrane components (gp91-phox, p22-phox and Rapla) of NADPH oxidase residing within membranes of intracellular compartments. This chain of events triggers production of O2*-. Then, oxidant-producing intracellular compartments associate with the plasma membrane. Eventually, intracellularly produced O2*- is released to the extracellular environment through the orifice formed by fusion of oxidant-producing compartments with the plasma membrane. Intracellular movement of the oxidant-producing compartments may be regulated by myosin light chain kinase. The review emphasizes that functional assembly of NADPH oxidase and, therefore, generation of O2*- is accomplished essentially within the intracellular compartments. Upon neutrophil stimulation, intracellularly generated O2*- is transported to the plasma membrane to be released and to ensure host defense against infection.  相似文献   

14.
The internal pH (pHi) of cytoplasts, derived from human neutrophils, falls 0.05 pH units upon activation of the superoxide-generating NADPH oxidase. The decrease in pHi is absent in diphenyleneiodonium-treated cytoplasts and therefore it is likely to arise directly from the activity of the oxidase. The addition of amiloride, to diminish the Na+/H+ exchanger, enhanced the extent of the internal acidification but not the initial rate. However the electroneutral Na+/H+ exchanger cannot be a contributor to H+ efflux to compensate for charge translocated by the oxidase. In the presence of Cd ions or valinomycin, phorbol-induced acidification of the cytosol was greatly increased, suggesting an inability to translocate the cytosolic H+ generated by an electrogenic oxidase. In the presence of both Cd and valinomycin the cytoplasts retained 0.8 H+ per O2-. generated. The rate of acidification of the external medium by stimulated cytoplasts is greatly reduced in the presence of Zn and valinomycin. Our results support the view that the plasma membrane of neutrophils contains Zn2+- or Cd2+-sensitive proton-conducting channels which maintain a stable membrane potential and pHi during the activity of the electrogenic NADPH oxidase.  相似文献   

15.
Abstract

We present an up-to-date insight into the function of NADPH oxidase in human neutrophils, the signalling pathways involved in activation of this enzyme and the process of association of its components with the cytoskeleton. We also discuss the functional implications of morphological studies revealing localization of the sites of NADPH oxidase activity. An original model of the process of superoxide (O2) production in human neutrophils is shown. Organization of NADPH oxidase is associated with several components. Upon stimulation, tri-phox cytosolic components of NADPH oxidase (p40-phox, p47-phox and p67-phox) bind to actin filaments. This process involves other actin-binding proteins, such as cofilin and coronin. Activated protein kinase C, translocated from the plasma membrane, phosphorylates cytosolic components at a scaffold of cytoskeleton. Subsequently, p40-phox, responsible for maintaining the resting state of NADPH oxidase, is separated from other two cytosolic phox proteins following an attachment of the active form of small GTP-binding protein Rac to p67-phox. Cytosolic duo-phox proteins (p47-phox and p67-phox) conjugate with membrane components (gp91-phox, p22-phox and Rap1a) of NADPH oxidase residing within membranes of intracellular compartments. This chain of events triggers production of O2. Then, oxidant-producing intracellular compartments associate with the plasma membrane. Eventually, intracellularly produced O2 is released to the extracellular environment through the orifice formed by fusion of oxidant-producing compartments with the plasma membrane. Intracellular movement of the oxidant-producing compartments may be regulated by myosin light chain kinase. The review emphasizes that functional assembly of NADPH oxidase and, therefore, generation of O2 is accomplished essentially within the intracellular compartments. Upon neutrophil stimulation, intracellularly generated O2 is transported to the plasma membrane to be released and to ensure host defense against infection.  相似文献   

16.
The composition of NADPH oxidase purified by Red Sepharose chromatography of extracts from human neutrophil membranes was investigated. In contrast to that was recently reported by others, the enzyme isolated according to this procedure contained a high concentration of cytochrome b-245 and little FAD. The results reinforce the belief that cytochrome b-245 is a major component of the NADPH oxidase and plays a fundamental role in the formation of O2-by neutrophils.  相似文献   

17.
Gliotoxin from Aspergillus, bearing a S&bond;S bond in its structure, prevented the onset of O(-)(2) generation by the human neutrophil NADPH oxidase in response to phorbol myristate acetate (PMA). Gliotoxin affected the activation process harder than the activated oxidase, as shown by its stronger inhibition when added to neutrophils prior to, than post-PMA at maximum enzyme turnover. Decreased O(-)(2) generation persisted even if cells treated with gliotoxin were subsequently washed, with half-inhibition concentrations (IC(50)) of 5.3, and 3.5 microM for treatments of 15 and 30 min, respectively. In addition, gliotoxin made neutrophils reduce cytochrome c regardless of absence of PMA, through its reaction with intracellular reductants in an oxygen-dependent process, named redox cycling. Thus, we next tested whether preincubation of neutrophils with gliotoxin under hypoxic conditions would relieve the inhibition of NADPH oxidase. Instead, this prevention of redox cycling significantly favored damage to the NADPH oxidase with an IC(50) of 0.009 microM. Moreover, conversion of gliotoxin to its dithiol derivative by addition of reduced dithiothreitol during incubation protected cells from losing oxidase activity. These findings support that the disulfide form of gliotoxin targets NADPH oxidase activation.  相似文献   

18.
Evidence is presented that oxygen products generated from xanthine oxidase (XO) may also be involved in the pathogenesis of neutrophil-mediate lung injury following intravascular activation of complement with cobra venom factor (CVF). CVF injection in rats resulted a rapid increase in plasma of both XO activity (but not xanthine dehydrogenase) and its reaction product, uric acid. These changes were greatly attenuated in allopurinol-treated animals. The apperance of XO activity was paralleled by a raise in plasma of histamine. Prevention of histamine release by pretreatment of rats withy cromolyn abolished both the rise in plasma histamine and the increase in XO activity. Since we have previously shown that histamine can enhance XO activity in vitro and in vivo (Am. J. Pathol. 135:203, 1989), these observations suggest that the increase in plasma XO activity following CVF injection is related to the appearance in plasma of histamine. Accordingly, pretreatment of rats with xanthine oxidase inhibitors (allopurinol, lodoxamine) or prevention of histamine release by pretreatment with cromolyn significantly attenuated development of lung injury following injection of CVF. Our data support the concept that oxygen radicals derived from both neutrophils and XO are playing a role in the CVF-induced acute lung injury.  相似文献   

19.
Plant respiratory burst oxidase homolog (rboh) proteins, which are homologous to the mammalian 91-kDa glycoprotein subunit of the phagocyte oxidase (gp91(phox)) or NADPH oxidase 2 (NOX2), have been implicated in the production of reactive oxygen species (ROS) both in stress responses and during development. Unlike mammalian gp91(phox)/NOX2 protein, plant rboh proteins have hydrophilic N-terminal regions containing two EF-hand motifs, suggesting that their activation is dependent on Ca(2+). However, the significance of Ca(2+) binding to the EF-hand motifs on ROS production has been unclear. By employing a heterologous expression system, we showed that ROS production by Arabidopsis thaliana rbohD (AtrbohD) was induced by ionomycin, which is a Ca(2+) ionophore that induces Ca(2+) influx into the cell. This activation required a conformational change in the EF-hand region, as a result of Ca(2+) binding to the EF-hand motifs. We also showed that AtrbohD was directly phosphorylated in vivo, and that this was enhanced by the protein phosphatase inhibitor calyculin A (CA). Moreover, CA itself induced ROS production and dramatically enhanced the ionomycin-induced ROS production of AtrbohD. Our results suggest that Ca(2+) binding and phosphorylation synergistically activate the ROS-producing enzyme activity of AtrbohD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号