首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Detailed histochemical studies have been made on the distribution of various enzymes such as phosphatases, cholinesterases, glycolytic enzymes and respiratory enzymes in various components of the hypothalamus with special reference to the supraoptic and paraventricular nuclei of the Squirrel Monkey. Cytological studies have also been made by the McManus, Einarson, Gomori and Bargmann methods.A few neurons of these nuclei showed scanty Gomori-positive material in the cytoplasm for the Gomori and Bargmann methods. Nissl granules were located in the peripheral cytoplasm of most neurons. No glycogen granules were observed in these neurons. For these reasons, the Squirrel Monkey, like the rat, may not be a suitable species for the study of neurosecretory phenomena.The axons of these neurons were negative for the specific cholinesterase test, though the perikaryon and some parts of the processes gave a moderately positive reaction. These neurons may be non-cholinergic and the cholinergic fibers from an unknown nucleus may end in synapses on their cell bodies. Blood vessels and glial cells in the neurosecretory nuclei showed non-specific cholinesterase activity. This enzyme may hydrolyze the acetylcholine which has escaped splitting by specific cholinesterase. Alkaline phosphatase and acid phosphatase in these neurons may be involved in the metabolism concerned with the production of neurosecretory material. The neurons may be physicochemical receptors and may get enough energy and raw material to synthesize the neurosecretory material from the rich blood supply. Neurons of the supraoptic and paraventricular nuclei as well as other hypothalamic neurons, like neurons of other regions of the brain, are well equipped with the enzymes of the glycolytic pathways and the tricarboxylic acid cycle. Since the glial cells of these nuclei have amylophosphorylase activity and glycolytic pathways, they may work as energy donators to the neurons of the neurosecretory nuclei. T. R. Shanthaveerappa in previous publications.  相似文献   

2.
3.
4.
Pierre -Paul Lacas 《PSN》2005,3(5):248-260
Gisela Pankow’s theoretical and clinical research led her to work out an original method of dynamic structuration for the cure of psychosis and serious mental disorders. She distinguishes two fundamental functions in the living body-image, and according to her master’s views, Ernst Kretschmer, who introduced the difference betweenKernpsychose (nuclear psychosis) andRandpsychose (marginal psychosis). These two functions are “symbolizing” and are relying on the “immanent laws” of the body. Such pankowian concepts are an extension of psychiatric, psychoanalytic and philosophical works which are not well known in ordinary medical circles: we must quote those of Kurt Goldstein, Gustav Siewerth, Gaston Fessard, for example. G. Pannkow uses ordinary words, such as form, sign, symbol, but this may be deceiving, for symbolism is not the same when speaking about forms or about language. Reading these authors reveals the background of these terms and enlightens the pankowian original concept of the living bodyimage, based on a realistic anthropology of the body’s immanent laws. This paper is only a basic introduction to Gisela Pankow’s rich and fruitful research.  相似文献   

5.
6.
Although germ cell cancer is rare (about 1% of cancers in male), it is the commonest cancer in young man. Many studies in Europe, Northern America and Australia show that incidence rates of testis cancer are climbing. In Northern Europe and America, where cancer registration exist since the fifties, it is showed that overall age-adjusted incidence rate of testis cancer has increased more than 3 fold during the past 50 years. This increase affect particularly teenagers and young men. The increase of incidence rates is less documented in under developed countries but recent studies seem to confirm an increase of incidence rates in many parts of the world, even if testis cancer remain rarer in non Caucasian populations. Etiologies of a such increase are still unknown, but arguments point in view a possible relation between environmental hormone disrupters and many hormonodependent cancers, such as testicular neoplasm, the cancer of the breast or even prostate cancer. Epidemiological studies with large sample size are needed to identify risk factors responsible for the increase of incidence rates of testis cancer.  相似文献   

7.
8.
9.
10.
Résumé Des recherches histoenzymatiques sont effectuées sur biopsies de 14 pancréas humains prélevés au cours d'interventions opératoires. Les cellules insulaires présentent une très grande activité pour la G-6-PDH, 6-PGDH, ICDH, Cis-Ac-ase et NADPH-R. Elles montrent une activité plus faible pour la LDH, MDH, 3-PGADH, SDH, ATP'ase, MAO, Sulfatase, Estérase et Leuc. Peptidase. La Lip-DH et la glucuronidase sont faiblement positives. Il existe une différence de l'activité enzymatique entre les cellules A et B; ces dernières montrent une activité plus importante. La G-6-P'ase, la F-1-6-DP'ase sont négatives. Certaines considérations sont faites sur le r?le probable des enzymes étudiées dans la cytophysiologie insulaire.
Summary Histoenzymatic investigations on 14 normal human biopsies from surgical interventions demonstrate a high activity of G-6-PDH, 6-PGDH, ICDH, Cis-Ac-ase and NADPH-R of the islet cells. The activities of LDH, MDH, 3-PGA-DH, SDH, ATP'ases, MAO, sulfatase, Esterase and Peptidases are considerably less intense. The Lip-DH, the glucuronidase are feebly positive. There exists a difference between the A and the B-cells. These latter shows generally a more considerable activity. Other activities like G-6-P'ase and F-1-6P'ase are negative. Some considerations are drawn on the presumable role of these enzymes in the cytophysiology of the islets of Langerhans.


Dédié au ProfesseurW. Bargmann à l'occasion de son 60e anniversaire.  相似文献   

11.

Introduction

Atoms theory and symmetry theory dominated physics. Symmetry propagation and interactions verify the Curie principle. But its violation by symmetry breaking is spontaneous.Fragility is creative. An information breaks a generalized symmetry. Results on symmetry breakings are not valid for fuzzy symmetries. The breaking of a fuzzy symmetry leads only to a pour symmetry (Fig.1). Homogeneity breaking, and atom of time are not usual concepts. We examine in this work symmetry breakings which generate the living time.

Relativistic Time-Space Breaking

  1. Medium and environment of living define ordinary referential of space and referential of time. Astronomical phenomena following classical mechanics and microphysical phenomena following quantum mechanics can be written with the same t coordinate.
  2. Relativity corrections. Schrödinger's Quantum mechanics (Eq.0) approximately governs molecular systems (Relativity corrections can be expressed as physical effects in the above defined referential).
  3. Time reversal symmetry. The well-known Wigner's transformation determines the microscopic reversibility.
  4. The three essential particle-vacancy equilibria. This transformation is verified by all particle-vacancy reciprocity. Vacancy moves like particle but with negative moment and positive kinetic energies. Only three biochemical equilibria admit this time reversal symmetry, namely: oxydo-reduction, acido-basicity, fluidity-viscosity. In these case, reacting electron, solvated proton, water molecule are respectively antagonist of the corresponding vacancy.
  5. Fuzzy character of time reversal symmetry. Dirac's equation does not admit this symmetry which only appears at the “non relativistic” limit of quantum phenomena. Hence particle-vacancy reciprocity is fuzzy according to the experimental evidence. (Laforgue et al., 1988).

Oriented Time

  1. From the universal reversible time, an additional breaking generates the oriented time, both in the astronomical and in the living matter.
  2. Irreversibility for the environment. We refer to Prigogine and Stengers (1988).
  3. Irreversibility for the living matter. We refer to Lochak (1986). Because equation (0), above discussed, is “microreversible” the second breaking could come from an additional term vanishing in the stationary states but increasing with time in evolutionary processes.
  4. Negative times. Taking into account the fuzzy character of the time reversal symmetry, the third breaking cannot suppress completely the occurrence of negative times. Reversed time is controlled by direct time. Except in the three above reported cases, time reversal symmetry is not verified by the medium. Free motion of the particle following eg.(0) or of the vacancy following time reversal reciprocal equation takes place only during short jumps from an interaction site to an other. Fig. 2 schematizes the law of motion of the electric charge corresponding to the transport by proton or by proton vacancy in an unitary field (fluctuations are neglected). The reserved jumps are estimated in the range of 10?12s. It is not excluded that such a jump can control a direct phenomenon.
  5. The living time. Biological phenomenon appears as an oriented set of events. Nevertheless latency or exaltation phases could be perceived. This modulation could be described by positive and negative times additional to the basic time. (Negative can be interpreted as above.)

Living produces Time

  1. That were not understandable, if time was only a frame, in which change occurs. Taking change as frame and time as effect, we regard biological activity as integrating reversible and irreversible time. Living synchronizes internal and external time by its own effort as it results (Lestienne, 1990) from Chronobiology.
  2. Time modulation. Let us consider the dy1...dyi...dyp changes in the variables of the system, dy={dyi} has produced dt. We proof (eq.(1) to (4)) that time is modulated by a Φ(y) speed coefficient depending on the medium. tmodulated=tΦ-1 (y)
  3. The production of reversible time (e.g.acido-basicity) determines time modulation. As above reported it remains some reversibility effects (jumps of negative time) which modulate time. E.g., if an important amount of reagent is necessary to modify an acid-base equilibrium, Φ(y) is small.
  4. Time modulation and activation-repression reciprocity. As well-known, long tmodulated means repression, short tmodulated means exaltation. Extrema of ? are symmetrical because particle and vacancy are reciprocal. Nevertheless reciprocity is not perfect. E.g., on fig. 3, the wet receptor determines the cell increasing, the dry receptor the cell senescence of a certain alga (Lück, 1962).
  5. Irreversible time production. Medium accepts entropy. Hence it acts in the second breaking of time. Living extracts the free energy from the medium, like a dissipative structure. That insures an operative point far from the thermodynamical equilibrium.

Consumption of Time

  1. The three followings correspond to the more trivial time consumption.
  2. Rhythmical time. Free energy flux is favourable to the arising of order in space or time. This later gives a structure to the living time.
  3. Mutual dependence of reversible time and rhythms. Time irreversible structure can be controlled by the above considered particle-vacancy equilibrium. Consequently the living time (modulated and structured) is a chemical time connected to molecular properties and to statistical thermodynamics. Practically, the connection between chronobiology and chemistry is important. The use of drugs could be interpreted as a response to an aggression against biorhythms.
  4. Lifetime. The dead-birth rhythm can be broken in two ways: evolution or indefinite life. This later is non exceptional for the living matter, e.g. in the vegetals where it is connected with the chlorophyllic assimilation; the time reversal significance of which is evident.
  5. The plan of the alchemist. Indefinitely life has fascinated individuals. Do the human species becomes better adapted by a longer life?

Conclusions

  1. Atoms of time could exist.
  2. Biological time is defined by the breaking of five generalized symmetries, namely: Minkovski's space symmetry, reversibility, homogeneity, rhythmicity, generations reproduction.
  3. Environment and medium determine non relativistic, oriented, structured time.
  4. At the microphysical scale, a fuzzy time reversal symmetry takes place, the breaking of which is not complete. Reversible time and dominating irreversible time are integrated in living phenomena.
  5. Three fundamental particle-vacancy reciprocities admit a part of reversibility. Irreversibility governs the all others phenomena.
  6. Time is produced chemically.
  7. A new perspective is the connection between chemical equilibria and rhythms including the time of the life.
  相似文献   

12.
13.
M. Levy  R. Toury 《BBA》1970,216(2):318-327
Study on the evolution of mitochondrial enzyme activities in hepatocyte during rat development

Some constitutive enzymes of the three isolated fractions of mitochondria outer membrane, inner membrane and matrix, have been investigated in rat hepatocyte during a period varying from the foetal state to the 15th day after birth.

In the three mitochondrial fractions, activities of the studied enzymes present different evolutions. In the matrix, the tricarboxylic enzyme activities have already reached their normal values before birth. In the outer membrane, the NADH-cytochrome c reductase activity increases regularly, in the same way as that of the endoplasmic reticulum NADH-cytochrome c reductase. In the inner membrane, the oxygen consumption is very low before birth, then increases suddenly from the 5th to the 8th day after birth, when it reaches the normal values. The limiting factor of the respiratory chain activities is neither cytochrome oxidase nor the first dehydrogenases.  相似文献   


14.
15.
16.

Introduction

Atoms theory and symmetry theory dominated physics. Symmetry propagation and interactions verify the Curie principle. But its violation by symmetry breaking is spontaneous.Fragility is creative. An information breaks a generalized symmetry. Results on symmetry breakings are not valid for fuzzy symmetries. The breaking of a fuzzy symmetry leads only to a pour symmetry (Fig.1). Homogeneity breaking, and atom of time are not usual concepts. We examine in this work symmetry breakings which generate the living time.

Relativistic Time-Space Breaking

  1. Medium and environment of living define ordinary referential of space and referential of time. Astronomical phenomena following classical mechanics and microphysical phenomena following quantum mechanics can be written with the same t coordinate.
  2. Relativity corrections. Schrödinger's Quantum mechanics (Eq.0) approximately governs molecular systems (Relativity corrections can be expressed as physical effects in the above defined referential).
  3. Time reversal symmetry. The well-known Wigner's transformation determines the microscopic reversibility.
  4. The three essential particle-vacancy equilibria. This transformation is verified by all particle-vacancy reciprocity. Vacancy moves like particle but with negative moment and positive kinetic energies. Only three biochemical equilibria admit this time reversal symmetry, namely: oxydo-reduction, acido-basicity, fluidity-viscosity. In these case, reacting electron, solvated proton, water molecule are respectively antagonist of the corresponding vacancy.
  5. Fuzzy character of time reversal symmetry. Dirac's equation does not admit this symmetry which only appears at the “non relativistic” limit of quantum phenomena. Hence particle-vacancy reciprocity is fuzzy according to the experimental evidence. (Laforgue et al., 1988).

Oriented Time

  1. From the universal reversible time, an additional breaking generates the oriented time, both in the astronomical and in the living matter.
  2. Irreversibility for the environment. We refer to Prigogine and Stengers (1988).
  3. Irreversibility for the living matter. We refer to Lochak (1986). Because equation (0), above discussed, is “microreversible” the second breaking could come from an additional term vanishing in the stationary states but increasing with time in evolutionary processes.
  4. Negative times. Taking into account the fuzzy character of the time reversed symmetry, the third breaking cannot suppress completely the occurrence of negative times. Reversed time is controlled by direct time. Except in the three above reported cases, time reversal symmetry is not verified by the medium. Free motion of the particle following eg.(0) or of the vacancy following time reversal reciprocal equation takes place only during short jumps from an interaction site to an other. Fig. 2 schematizes the law of motion of the electric charge corresponding to the transport by proton or by proton vacancy in an unitary field (fluctuations are neglected). The reserved jumps are estimated in the range of 10?12s. It is not excluded that such a jump can control a direct phenomenon.
  5. The living time. Biological phenomenon appears as an oriented set of events. Nevertheless latency or exaltation phases could be perceived. This modulation could be described by positive and negative times additional to the basic time. (Negative can be interpreted as above)

Living produces Time

  1. That were not understandable, if time was only a frame, in which change occurs. Taking chance as frame and time as effect, we regard biological activity as integrating reversible and irreversible time. Living synchronizes internal and external time by its own effort as it results (Lestienne, 1990) from Chronobiology.
  2. Time modulation. Let us consider the dy1...dyi...dyp changes in the variables of the systems, dy={dyi} has produced dt. We proof (eq.(1) to (4)) that time is modulated by a φ(y) speed coefficient depending on the medium. tmodulated=tφ (y) ?1
  3. The production of reversible time (e.g.acido-basicity) determines time modulation. As above reported it remains some reversibility effects (jumps of negative time) which modulate time. E.G., if an important amount of reagent is necessary to modify an acid-base equilibrium, φ(y) is small.
  4. Time modulation and activation-repression reciprocity. As well-known, long tmodulated means repression, short tmodulated means exaltation. Extrema of ? are symmetrical because particle and vacancy are reciprocal. Nevertheless reciprocity is not perfect. E.g., on fig. 3, the wet receptor determines the cell increasing, the dry receptor the cell senescence of a certain alga (Lück, 1962).
  5. Irreversible time production. Medium accepts entropy. Hence it acts in the second breaking of time. Living extracts the free energy from the medium, like a dissipative structure. That insures an operative point far from the thermodynamical equilibrium.

Consumption of Time

  1. The three followings correspond to the more trivial time consumption.
  2. Rhythmical time. Free energy flux is favourable to the arising of order in space or time. This later gives a structure to the living time.
  3. Mutual dependence of reversible time and rhythms. Time irreversible structure can be controlled by the above considered particle-vacancy equilibrium. Consequently the living time (modulated and structured) is a chemical time connected to molecular properties and to statistical thermodynamics. Practically, the connection between chronobiology and chemistry is important. The use of drugs could be interpreted as a response to an aggression against biorhythms.
  4. Lifetime. The dead-birth rythm can be broken in two ways: evolution or indefinite life. This later is non exceptional for the living matter, e.g. in the vegetals where it is connected with the chlorophyllic assimilation; the time reversal significance of which is evident.
  5. The plan of the alchemist. Indefinitely life has fascinated individuals. Do the human species becomes better adapted by a longer life?

Conclusions

  1. Atoms of time could exist.
  2. Biological time is defined by the breaking of five generalized symmetries, namely: Minkovski's space symmetry, reversibility, homogeneity, rhythmicity, generations reproduction.
  3. Environment and medium determine non relativistic, oriented, structured time.
  4. At the microphysical scale, a fuzzy time reversal symmetry takes place, the breaking of which is not complete. Reversible time and dominating irreversible time are integrated in living phenomena.
  5. Three fundamental particle-vacancy reciprocities admit a part of reversibity. Irreversibility governs the all others phenomena.
  6. Time is produced chemically.
  7. A new perspective is the connection between chemical equilibria and rhythms including the time of the life.
  相似文献   

17.
18.
19.
Résumé Vu l'importance des températures du sol en météorologie agricole, on a cherché si tous les instruments utilisés donnaient des indications identiques. Ce n'est pas le cas. L'auteur examine quels sont les critères auquels un appareil doit répondre pour donner des indications utilisables. Il faut qu'il s'adapte aux caractéristiques particulières des racines (placé horizontalement)et qu'il adhère très bien au sol. Cette seconde condition est pratiquement toujours satisfaite en terrain humide (proche de la mer). Plus le climat est continental et plus elle est difficile à satisfaire. On constate alors de grands écarts entre les appareils de mesure.Pour y parer,1'auteur propose l'usage généralisé de résistances électriques sous chapes de plomb.
The author has investigated whether all instruments for measuring soil temperature give the same results, and the conditions necessary for the measurement of correct and reproducible values.An instrument must fit the shape of the roots properly (horizontal position) and must have a good contact with the soil.This latter condition is always fulfilled in wet soil near the sea and is less fulfilled the more continental the climate is. Large variations in the results using different instruments are found in areas with a continental climate. The author therefore recommends the use of electrical resistance thermometers with lead caps.

Zusammenfassung Der Autor hat untersucht, ob alle Instrumente zur Messung der Bodentemperatur gleiche Werte geben und welche Bedingungen erfüllt sein müssen, damit genaue und reproduzierbare Werte gemessen werden. Ein Instrument muss an die Eigenarten der Wurzeln angepasst sein (horizontale Lagerung) und sehr guten Kontakt mit dem Boden haben. Die letztere Bedingung ist bei nassem Boden in MeeresnÄhe immer erfüllt und desto schwieriger zu befriedigen, je kontinentaler das Klima ist. Grosse Messunterschiede werden in kontinentalem Klima bei Verwendung von verschiedenen Instrumenten gefunden. Der Autor empfiehlt die Verwendung von elektrischen Widerstandsthermometernnat Bleikappen.
  相似文献   

20.
《L'Anthropologie》2018,122(1):14-32
The site of Baigu, in Bose basin, autonomous region of Guangxi Zhuang (China), dated to just over 800,000 years, delivered a rich lithic industry, mainly composed of pebbles tools. This industry consisted by the abundance of heavy and huge pebbles tools, the choppers, the picks massive and the hand-axes. The flakes have been rare retouched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号