首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence.  相似文献   

2.
Davis AR  Znosko BM 《Biochemistry》2008,47(38):10178-10187
Due to their prevalence and roles in biological systems, single mismatches adjacent to G-U pairs are important RNA structural elements. Since there are only limited experimental values for the stability of single mismatches adjacent to G-U pairs, current algorithms using free energy minimization to predict RNA secondary structure from sequence assign predicted thermodynamic values to these types of single mismatches. Here, thermodynamic data are reported for frequently occurring single mismatches adjacent to at least one G-U pair. This experimental data can be used in place of predicted thermodynamic values in algorithms that predict secondary structure from sequence using free energy minimization. When predicting the thermodynamic contributions of previously unmeasured single mismatches, most algorithms apply the same thermodynamic penalty for an A-U pair adjacent to a single mismatch and a G-U pair adjacent to a single mismatch. A recent study, however, suggests that the penalty for a G-U pair adjacent to a tandem mismatch should be 1.2 +/- 0.1 kcal/mol, and the penalty for an A-U pair adjacent to a tandem mismatch should be 0.5 +/- 0.2 kcal/mol [Christiansen, M. E. and Znosko, B. M. (2008) Biochemistry 47, 4329-4336]. Therefore, the data reported here are combined with the existing thermodynamic dataset of single mismatches, and nearest neighbor parameters are derived for an A-U pair adjacent to a single mismatch (1.1 +/- 0.1 kcal/mol) and a G-U pair adjacent to a single mismatch (1.4 +/- 0.1 kcal/mol).  相似文献   

3.
Davis AR  Znosko BM 《Biochemistry》2007,46(46):13425-13436
Many naturally occurring RNA structures contain single mismatches. However, the algorithms currently used to predict RNA structure from sequence rely on a minimal set of data for single mismatches, most of which occur rather infrequently in nature. As a result, several approximations and assumptions are used to predict the stability of RNA duplexes containing the most common single mismatches. Therefore, the relative frequency of single mismatches was determined by compiling and searching a database of 955 RNA secondary structures. Thermodynamic parameters for duplex formation, derived from optical melting experiments, are reported for 28 oligoribonucleotides containing frequently occurring single mismatches. These data were then combined with previous data to construct a dataset of 64 single mismatches, including the 30 most common in the database. Because of this increase in experimental thermodynamic parameters for single mismatches that occur frequently in nature, more accurate free energy calculations have resulted. To improve the prediction of the thermodynamic parameters for duplexes containing single mismatches that have not been experimentally measured, single mismatch-specific nearest neighbor parameters were derived. The free energy of an RNA duplex containing a single mismatch that has not been thermodynamically characterized can be calculated by: DeltaG degrees 37,single mismatch = DeltaG degrees 37,mismatch nt + DeltaG degrees 37,mismatch-NN interaction + DeltaG degrees 37,AU/GU. Here, DeltaG degrees 37,mismatch is -0.4, -2.1, and -0.3 kcal/mol for A.G, G.G, and U.U mismatches, respectively; DeltaG degrees 37,mismatch-NN interaction is 0.7, -0.5, 0.4, -0.4, and -1.0 kcal/mol for 5'YRR3'/3'RRY5', 5'RYY3'/3'YYR5', 5'YYR3'/3'RYY5', 5'YRY3'/3'RYR5', and 5'RRY3'/3'YYR5' mismatch-nearest neighbor combinations, respectively, when A and G are categorized as purines (R) and C and U are categorized as pyrimidines (Y); and DeltaG degrees 37,AU/GU is a penalty of 1.2 kcal/mol for replacing a G-C base pair with either an A-U or G-U base pair. Similar predictive models were also derived for DeltaH degrees single mismatch and DeltaS degrees single mismatch. These new predictive models, in conjunction with the reported thermodynamics for frequently occurring single mismatches, should allow for more accurate calculations of the free energy of RNA duplexes containing single mismatches and, furthermore, allow for improved prediction of secondary structure from sequence.  相似文献   

4.
Thermodynamic parameters for internal loops of unpaired adenosines in oligoribonucleotides have been measured by optical melting studies. Comparisons are made between helices containing symmetric and asymmetric loops. Asymmetric loops destabilize a helix more than symmetric loops. The differences in free energy between symmetric and asymmetric loops are roughly half the magnitude suggested from a study of parameters required to give accurate predictions of RNA secondary structure [Papanicolaou, C., Gouy, M., & Ninio, J. (1984) Nucleic Acids Res. 12, 31-44]. Circular dichroism spectra indicate no major structural difference between helices containing symmetric and asymmetric loops. The measured sequence dependence of internal loop stability is not consistent with approximations used in current algorithms for predicting RNA secondary structure.  相似文献   

5.
Structure and energetic properties of base pair mismatches in duplex RNA have been the focus of numerous investigations due to their role in many important biological functions. Such efforts have contributed to the development of models for secondary structure prediction of RNA, including the nearest-neighbor model. In RNA duplexes containing GU mismatches, 5'-GU-3' tandem mismatches have a different thermodynamic stability than 5'-UG-3' mismatches. In addition, 5'-GU-3' mismatches in some sequence contexts do not follow the nearest-neighbor model for stability. To characterize the underlying atomic forces that determine the structural and thermodynamic properties of GU tandem mismatches, molecular dynamics (MD) simulations were performed on a series of 5'-GU-3' and 5'-UG-3' duplexes in different sequence contexts. Overall, the MD-derived structural models agree well with experimental data, including local deviations in base step helicoidal parameters in the region of the GU mismatches and the model where duplex stability is associated with the pattern of GU hydrogen bonding. Further analysis of the simulations, validated by data from quantum mechanical calculations, suggests that the experimentally observed differences in thermodynamic stability are dominated by GG interstrand followed by GU intrastrand base stacking interactions that dictate the one versus two hydrogen bonding scenarios for the GU pairs. In addition, the inability of 5'-GU-3' mismatches in different sequence contexts to all fit into the nearest-neighbor model is indicated to be associated with interactions of the central four base pairs with the surrounding base pairs. The results emphasize the role of GG and GU stacking interactions on the structure and thermodynamics of GU mismatches in RNA.  相似文献   

6.
Thermodynamics of single mismatches in RNA duplexes   总被引:4,自引:0,他引:4  
Kierzek R  Burkard ME  Turner DH 《Biochemistry》1999,38(43):14214-14223
The thermodynamic properties and structures of single mismatches in short RNA duplexes were studied in optical melting and imino proton NMR experiments. The free energy increments at 37 degrees C measured for non-GU single mismatches range from -2.6 to 1.7 kcal/mol. These increments depend on the identity of the mismatch, adjacent base pairs, and the position in the helix. UU and AA mismatches are more stable close to a helix end, but GG mismatch stability is essentially unaffected by the position in the helix. Approximations are suggested for predicting stabilities of single mismatches in short RNA duplexes.  相似文献   

7.
The X-ray crystallographic structure of the RNA duplex [r(CGCAIGCG)]2 has been refined to 2.5 A. It shows a symmetric internal loop of two non-Watson-Crick base pairs which form in the middle of the duplex. The tandem A-I/I-A pairs are related by a crystallographic two-fold axis. Both A(anti)-I(anti) mismatches are in a head-to-head conformation forming hydrogen bonds using the Watson-Crick positions. The octamer duplexes stack above one another in the cell forming a pseudo-infinite helix throughout the crystal. A hydrated calcium ion bridges between the 3'-terminal of one molecule and the backbone of another. The tandem A-I mismatches are incorporated with only minor distortion to the backbone. This is in contrast to the large helical perturbations often produced by sheared G-A pairs in RNA oligonucleotides.  相似文献   

8.
Hausmann NZ  Znosko BM 《Biochemistry》2012,51(26):5359-5368
To better elucidate RNA structure-function relationships and to improve the design of pharmaceutical agents that target specific RNA motifs, an understanding of RNA primary, secondary, and tertiary structure is necessary. The prediction of RNA secondary structure from sequence is an intermediate step in predicting RNA three-dimensional structure. RNA secondary structure is typically predicted using a nearest neighbor model based on free energy parameters. The current free energy parameters for 2 × 3 nucleotide loops are based on a 23-member data set of 2 × 3 loops and internal loops of other sizes. A database of representative RNA secondary structures was searched to identify 2 × 3 nucleotide loops that occur in nature. Seventeen of the most frequent 2 × 3 nucleotide loops in this database were studied by optical melting experiments. Fifteen of these loops melted in a two-state manner, and the associated experimental ΔG°(37,2×3) values are, on average, 0.6 and 0.7 kcal/mol different from the values predicted for these internal loops using the predictive models proposed by Lu, Turner, and Mathews [Lu, Z. J., Turner, D. H., and Mathews, D. H. (2006) Nucleic Acids Res. 34, 4912-4924] and Chen and Turner [Chen, G., and Turner, D. H. (2006) Biochemistry 45, 4025-4043], respectively. These new ΔG°(37,2×3) values can be used to update the current algorithms that predict secondary structure from sequence. To improve free energy calculations for duplexes containing 2 × 3 nucleotide loops that still do not have experimentally determined free energy contributions, an updated predictive model was derived. This new model resulted from a linear regression analysis of the data reported here combined with 31 previously studied 2 × 3 nucleotide internal loops. Most of the values for the parameters in this new predictive model are within experimental error of those of the previous models, suggesting that approximations and assumptions associated with the derivation of the previous nearest neighbor parameters were valid. The updated predictive model predicts free energies of 2 × 3 nucleotide internal loops within 0.4 kcal/mol, on average, of the experimental free energy values. Both the experimental values and the updated predictive model can be used to improve secondary structure prediction from sequence.  相似文献   

9.
Thermodynamic stability of DNA tandem mismatches   总被引:2,自引:0,他引:2  
The thermodynamics of nine hairpin DNAs were evaluated using UV-monitored melting curves and differential scanning calorimetry (DSC). Each DNA has the same five-base loop and a stem with 8-10 base pairs. Five of the DNAs have a tandem mismatch in the stem, while four have all base pairs. The tandem mismatches examined (ga/ga, aa/gc, ca/gc, ta/ac, and tc/tc) spanned the range of stability observed for this motif in a previous study of 28 tandem mismatches. UV-monitored melting curves were obtained in 1.0 M Na(+), 0.1 M Na(+), and 0.1 M Na(+) with 5 mM Mg(2+). DSC studies were conducted in 0.1 M Na(+). Transition T(m) values were unchanged over a 50-fold range of strand concentration. Model-independent enthalpy changes (DeltaH degrees ) evaluated by DSC were in good agreement (+/-8%) with enthalpy values determined by van't Hoff analyses of the melting curves in 0.1 M Na(+). The average heat capacity change (DeltaC(p)) associated with the hairpin to single strands transitions was estimated from plots of DeltaH degrees and DeltaS degrees with T(m) and ln T(m), respectively, and from profiles of DSC curves. The average DeltaC(p) values (113 +/- 9 and 42 +/- 27 cal x K(-1) x mol(-1) of bp), were in the range of values reported in previous studies. Consideration of DeltaC(p) produced large changes in DeltaH degrees and DeltaS degrees extrapolated from the transition region to 37 degrees C and smaller but significant changes to free energies. The loop free energy of the five tandem mismatches at 37 degrees C varied over a range of approximately 4 kcal x mol(-1) for each solvent.  相似文献   

10.
The thermodynamics governing the denaturation of RNA duplexes containing 8 bp and a central tandem mismatch or 10 bp were evaluated using UV absorbance melting curves. Each of the eight tandem mismatches that were examined had one U-U pair adjacent to another noncanonical base pair. They were examined in two different RNA duplex environments, one with the tandem mismatch closed by G.C base pairs and the other with G.C and A.U closing base pairs. The free energy increments (Delta Gdegrees(loop)) of the 2 x 2 loops were positive, and showed relatively small differences between the two closing base pair environments. Assuming temperature-independent enthalpy changes for the transitions, (Delta Gdegrees(loop)) for the 2 x 2 loops varied from 0.9 to 1.9 kcal/mol in 1 M Na(+) at 37 degrees C. Most values were within 0.8 kcal/mol of previously estimated values; however, a few sequences differed by 1.2-2.0 kcal/mol. Single strands employed to form the RNA duplexes exhibited small noncooperative absorbance increases with temperature or transitions indicative of partial self-complementary duplexes. One strand formed a partial self-complementary duplex that was more stable than the tandem mismatch duplexes it formed. Transitions of the RNA duplexes were analyzed using equations that included the coupled equilibrium of self-complementary duplex and non-self-complementary duplex denaturation. The average heat capacity change (DeltaC(p)) associated with the transitions of two RNA duplexes was estimated by plotting DeltaH degrees and DeltaS degrees evaluated at different strand concentrations as a function of T(m) and ln T(m), respectively. The average DeltaC(p) was 70 +/- 5 cal K(-)(1) (mol of base pairs)(-)(1). Consideration of this heat capacity change reduced the free energy of formation at 37 degrees C of the 10 bp control RNA duplexes by 0.3-0.6 kcal/mol, which may increase Delta Gdegrees(loop) values by similar amounts.  相似文献   

11.
Thermodynamic parameters and circular dichroism spectra are presented for RNA hairpins containing single internal mismatches in the stem regions. Three different sequence contexts for the G*U mismatch and two contexts for C*A, G*A, U*U, A*C and U*G mismatches were examined and compared with Watson-Crick base-pair stabilities. The RNA hairpins employed were a microhelix and tetraloop representing the Escherichia coli tRNAAlaacceptor stem and sequence variants that have been altered at the naturally occurring G*U mismatch site. UV melting studies were carried out under different conditions to evaluate the effects of sodium ion concentration and pH on the stability of mismatch-containing hairpins. Our main findings are that single internal mismatches exhibit a range of effects on hairpin stability. In these studies, the size and sequence of the loop and stem are shown to influence the overall stability of the RNA, and have a minor effect on the relative mismatch stabilities. The relationship of these results to RNA-ligand interactions involving mismatch base-pairs is discussed.  相似文献   

12.
Escherichia coli MutS is a versatile repair protein that specifically recognizes not only various types of mismatches but also single stranded loops of up to 4 nucleotides in length. Specific binding, followed by the next step of tracking the DNA helix that locates hemi-methylated sites, is regulated by the conformational state of the protein as a function of ATP binding/hydrolysis. Here, we study how various molecular determinants of a heteroduplex regulate mismatch recognition by MutS, the critical first step of mismatch repair. Using classical DNase I footprinting assays, we demonstrate that the hierarchy of MutS binding to various types of mismatches is identical whether the mismatches are present singly or in multiples. Moreover, this unique hierarchy is indifferent both to the differential level of DNA helical flexibility and to the unpaired status of the mismatched bases in a heteroduplex. Surprisingly, multiple mismatches exhibit reduced affinity of binding to MutS, compared to that of a similar single mismatch. Such a reduction in the affinity might be due to sequence context effects, which we established more directly by studying two identical single mismatches in an altered sequence background. A mismatch, upon simply being flipped at the same location, elicits changes in MutS specific contacts, thereby underscoring the importance of sequence context in modulating MutS binding to mismatches.  相似文献   

13.
Guanine:adenine (G:A) mismatches and in particular tandem G:A (tG:A) mismatches are frequently observed in biological RNA molecules and can serve as sites for tertiary interaction, metal binding and protein recognition. Depending on the surrounding sequence tG:A mismatches can adopt different basepairing topologies. In the sequence context (5'-) GGAC (tandem G:A in bold) a face-to-face (imino or Watson-Crick-like) pairing is preferred whereas in the CGAG context, G and A adopt a sheared arrangement. Systematic conformational searches with a generalized Born continuum model and molecular dynamics simulations including explicit water molecules and ions have been used to generate face-to-face and sheared tG:A mismatches in both CGAG and GGAC sequence contexts. Conformations from both approaches were evaluated using the same force field and a Poisson-Boltzmann continuum solvent model. Although the substate analysis predicted the sheared arrangement to be energetically preferred in both sequence contexts, a significantly greater preference of the sheared form was found for the CGAG context. In agreement with the experimental observation, the analysis of molecular dynamics trajectories indicated a preference of the sheared form in the case of the CGAG-context and a favorization of the face-to-face form in the case of the GGAC context. The computational studies allowed to identify energetic contributions that stabilize or destabilize the face-to-face and sheared tandem mismatch topologies. The calculated nonpolar solvation and Lennard-Jones packing interaction were found to stabilize the sheared topology independent of the sequence context. Electrostatic contributions are predicted to make the most significant contribution to the sequence context dependence on the structural preference of tG:A mismatches.  相似文献   

14.
Badhwar J  Karri S  Cass CK  Wunderlich EL  Znosko BM 《Biochemistry》2007,46(50):14715-14724
Thermodynamic data for RNA 1 x 2 nucleotide internal loops are lacking. Thermodynamic data that are available for 1 x 2 loops, however, are for loops that rarely occur in nature. In order to identify the most frequently occurring 1 x 2 nucleotide internal loops, a database of 955 RNA secondary structures was compiled and searched. Twenty-four RNA duplexes containing the most common 1 x 2 nucleotide loops were optically melted, and the thermodynamic parameters DeltaH degrees , DeltaS degrees , DeltaG degrees 37, and TM for each duplex were determined. This data set more than doubles the number of 1 x 2 nucleotide loops previously studied. A table of experimental free energy contributions for frequently occurring 1 x 2 nucleotide loops (as opposed to a predictive model) is likely to result in better prediction of RNA secondary structure from sequence. In order to improve free energy calculations for duplexes containing 1 x 2 nucleotide loops that do not have experimental free energy contributions, the data collected here were combined with data from 21 previously studied 1 x 2 loops. Using linear regression, the entire dataset was used to derive nearest neighbor parameters that can be used to predict the thermodynamics of previously unmeasured 1 x 2 nucleotide loops. The DeltaG degrees 37,loop and DeltaH degrees loop nearest neighbor parameters derived here were compared to values that were published previously for 1 x 2 nucleotide loops but were derived from either a significantly smaller dataset of 1 x 2 nucleotide loops or from internal loops of various sizes [Lu, Z. J., Turner, D. H., and Mathews, D. H. (2006) Nucleic Acids Res. 34, 4912-4924]. Most of these values were found to be within experimental error, suggesting that previous approximations and assumptions associated with the derivation of those nearest neighbor parameters were valid. DeltaS degrees loop nearest neighbor parameters are also reported for 1 x 2 nucleotide loops. Both the experimental thermodynamics and the nearest neighbor parameters reported here can be used to improve secondary structure prediction from sequence.  相似文献   

15.
N Sugimoto  R Kierzek  D H Turner 《Biochemistry》1987,26(14):4559-4562
Stability increments of terminal mismatches on the core helixes AUGCAU and UGCGCA are reported. Enthalpy, entropy, and free energy changes of helix formation were measured spectrophotometrically for 15 oligoribonucleotides containing the core sequences and various mismatches. Free energy increments for mismatches in this series range from -0.5 to -1.1 kcal/mol. These increments for mismatches on AU base pairs are smaller than those measured previously on GC base pairs [Freier, S.M., Kierzek, R., Caruthers, M.H., Neilson, T., & Turner, D.H. (1986) Biochemistry 25, 3209-3213]. The terminal GU mismatches in the sequences GAUGCAUUp and UAUGCAUGp add approximately the same stability increment as the corresponding terminal AU mismatch. The stability increments for pyrimidine-pyrimidine and pyrimidine-purine mismatches can be approximated within 0.3 kcal/mol by adding the stability increments for the corresponding 3' and 5' unpaired nucleotides (dangling ends). Stability increments for purine-purine mismatches are approximated well by the stability increment for the corresponding 3' dangling end made more favorable by 0.2 kcal/mol. These approximations are used to provide a table of stability increments for all 48 possible sequences of mismatches.  相似文献   

16.
In this article, it is shown how optimized and dedicated microarray experiments can be used to study the thermodynamics of DNA hybridization for a large number of different conformations in a highly parallel fashion. In particular, free energy penalties for mismatches are obtained in two independent ways and are shown to be correlated with values from melting experiments in solution reported in the literature. The additivity principle, which is at the basis of the nearest-neighbor model, and according to which the penalty for two isolated mismatches is equal to the sum of the independent penalties, is thoroughly tested. Additivity is shown to break down for a mismatch distance below 5 nt. The behavior of mismatches in the vicinity of the helix edges, and the behavior of tandem mismatches are also investigated. Finally, some thermodynamic outlying sequences are observed and highlighted. These sequences contain combinations of GA mismatches. The analysis of the microarray data reported in this article provides new insights on the DNA hybridization parameters and can help to increase the accuracy of hybridization-based technologies.  相似文献   

17.
RNA secondary structure is often predicted from sequence by free energy minimization. Over the past two years, advances have been made in the estimation of folding free energy change, the mapping of secondary structure and the implementation of computer programs for structure prediction. The trends in computer program development are: efficient use of experimental mapping of structures to constrain structure prediction; use of statistical mechanics to improve the fidelity of structure prediction; inclusion of pseudoknots in secondary structure prediction; and use of two or more homologous sequences to find a common structure.  相似文献   

18.
With the rapid increase in the size of the genome sequence database, computational analysis of RNA will become increasingly important in revealing structure-function relationships and potential drug targets. RNA secondary structure prediction for a single sequence is 73 % accurate on average for a large database of known secondary structures. This level of accuracy provides a good starting point for determining a secondary structure either by comparative sequence analysis or by the interpretation of experimental studies. Dynalign is a new computer algorithm that improves the accuracy of structure prediction by combining free energy minimization and comparative sequence analysis to find a low free energy structure common to two sequences without requiring any sequence identity. It uses a dynamic programming construct suggested by Sankoff. Dynalign, however, restricts the maximum distance, M, allowed between aligned nucleotides in the two sequences. This makes the calculation tractable because the complexity is simplified to O(M(3)N(3)), where N is the length of the shorter sequence.The accuracy of Dynalign was tested with sets of 13 tRNAs, seven 5 S rRNAs, and two R2 3' UTR sequences. On average, Dynalign predicted 86.1 % of known base-pairs in the tRNAs, as compared to 59.7 % for free energy minimization alone. For the 5 S rRNAs, the average accuracy improves from 47.8 % to 86.4 %. The secondary structure of the R2 3' UTR from Drosophila takahashii is poorly predicted by standard free energy minimization. With Dynalign, however, the structure predicted in tandem with the sequence from Drosophila melanogaster nearly matches the structure determined by comparative sequence analysis.  相似文献   

19.
Shankar N  Xia T  Kennedy SD  Krugh TR  Mathews DH  Turner DH 《Biochemistry》2007,46(44):12665-12678
NMR studies provide insights into structural features of internal loops. These insights can be combined with thermodynamic studies to generate models for predicting structure and energetics. The tandem mismatch internal loop, 5'GUGG3'(3'CUAC5'), has been studied by NMR. The NMR structure reveals an internal loop with no hydrogen bonding between the loop bases and with the G in the AG mismatch flipped out of the helix. The sequence of this internal loop is highly conserved in rRNA. The loop is located in the large ribosomal subunit and is part of a conserved 58-nt fragment that is the binding domain of ribosomal protein L11. Structural comparisons between variants of this internal loop in crystal structures of the 58-nt domain complexed with L11 protein and of the large ribosomal subunit (LSU) suggest that this thermodynamically destabilizing internal loop is partially preorganized for tertiary interactions and for binding L11. A model for predicting the base pairing and free energy of 2 x 2 nucleotide internal loops with a purine-purine mismatch next to a pyrimidine-pyrimidine mismatch is proposed on the basis of the present NMR structure and previously reported thermodynamics.  相似文献   

20.
Vanegas PL  Horwitz TS  Znosko BM 《Biochemistry》2012,51(11):2192-2198
Currently, several models for predicting the secondary structure of RNA exist, one of which is free energy minimization using the Nearest Neighbor Model. This model predicts the lowest-free energy secondary structure from a primary sequence by summing the free energy contributions of the Watson-Crick nearest neighbor base pair combinations and any noncanonical secondary structure motif. The Nearest Neighbor Model also assumes that the free energy of the secondary structure motif is dependent solely on the identities of the nucleotides within the motif and the motif's nearest neighbors. To test the current assumption of the Nearest Neighbor Model that the non-nearest neighbors do not affect the stability of the motif, we optically melted different stem-loop oligonucleotides to experimentally determine their thermodynamic parameters. In each of these oligonucleotides, the hairpin loop sequence and the adjacent base pairs were held constant, while the first or second non-nearest neighbors were varied. The experimental results show that the thermodynamic contributions of the hairpin loop were dependent upon the identity of the first non-nearest neighbor, while the second non-nearest neighbor had a less obvious effect. These results were then used to create an updated model for predicting the thermodynamic contributions of a hairpin loop to the overall stability of the stem-loop structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号