首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test whether the identity of divalent metal activator affects the specificity of misincorporation during polymerization catalyzed by E. coli DNA polymerase I, we carried out the following procedure. A series of oligonucleotide primers, annealed at different positions along the lacZ region of bacteriophage M13mp9 DNA, were elongated in the presence of 3 of the 4 deoxynucleoside 5'-triphosphates (dNTPs) until one or a few misincorporations occurred in each elongated primer. The elongated primers (containing deoxynucleotide residues that had been misincorporated in the presence of either Mg2+ or Mn2+) were then isolated and sequenced by the 'dideoxy' chain termination method to determine the identity of deoxynucleoside monophosphates (dNMPs) that had been misincorporated at different template positions during the original 'minus' reactions, activated by Mg2+ or Mn2+. The results obtained by this approach revealed that both the type of misincorporation and the effect of substituting Mn2+ for Mg2+ depended on the nucleotide sequence of the template. At 40% of the template positions at which misincorporation was compared with both metal ions (8 out of 20), the identity of mispairs differed significantly for synthesis activated by Mn2+ versus Mg2+. Of these 8 sites, 4 exhibited increased transversions in the presence of Mn2+, while 4 exhibited decreased transversions with Mn2+.  相似文献   

2.
Vitamin D-dependent Ca2+-binding protein from pig duodenum was hydrolysed with trypsin in the presence of Ca2+ and two products were obtained: T1, which differed from the native protein by loss of Ac-Ser-Ala-Gln-Lys from the N-terminus and Ile-Ser-Gln-OH from the C-terminus, and T2, which differed from T1 by loss of a C-terminal lysine. The hydrolysis inactivated one of the two high-affinity Ca2+-binding sites on the native protein, and the remaining site was stable in T1 but labile in T2 when the proteins were Ca2+-free. Binding studies showed that T1 had Kd values of 2.8 +/- 0.1 nM, 57 +/- 13 microM and 0.8 +/- 0.3 microM for Ca2+, Mg2+ and Mn2+ respectively, and T2 had Kd 2.2 +/- 0.3 nM for Ca2+. The affinity for Mn2+, together with the other Kd values, identified the site on T1 as the site on the native protein previously found to have Kd 0.6 microM for Mn2+, rather than one with Kd 50 microM for Mn2+. In contrast with both the native protein and another form of the protein with a single Ca2+-binding site, the intrinsic fluorescence of T1 and T2 was little affected by the addition of Ca2+. It was concluded that the active binding site in T1 and T2, and also the site in the native protein with the higher affinity for Mn2+, was probably in the C-terminal half of the molecule.  相似文献   

3.
RNA synthesis in yeast is rapidly inhibited by 8-hydroxyquinoline and the phenazine antibiotic lomofungin (5-formyl-1-methoxycarbonyl-4,6,8-trihydroxyphenazine). It is shown that lomofungin, like 8-hydroxyquinoline, is a chelating agent for bivalent cations. The mechanism of inhibition of RNA synthesis by lomofungin and 8-hydroxyquinoline was investigated in experiments with isolated Escherichia coli RNA polymerase. The results show that both inhibitors are capable of inhibiting polymerase activity solely by chelating the dissociable cations Mn2+ and Mg2+. Evidence is presented which shows that inhibition may occur in the absence of any direct contact between the RNA polymerase or DNA template and the inhibitor. The possibility that inhibition might also occur by chelation of the Zn2+, which is tightly bound to the polymerase, is discussed: it is concluded that lomofungin or 8-hydroxyquinoline is likely to inhibit the enzyme by removal of Mn2+ and Mg2+ before chelating the Zn2+. On the basis of inhibition by chelation of Mn2+ and Mg2+, explanations are proposed for why lomofungin and 8-hydroxyquinoline inhibit synthesis of ribosomal and polydisperse RNA more than that of 5S RNA and tRNA, and for why protein synthesis is not immediately inhibited in the intact yeast cell.  相似文献   

4.
Role of the divalent metal cation in the pyruvate oxidase reaction   总被引:3,自引:0,他引:3  
Purified pyruvate oxidase requires a divalent metal cation for enzymatic activity. The function of the divalent metal cation was studied for unactivated, dodecyl sulfate-activated, and phosphatidylglycerol-activated oxidase. Assays performed in the presence of Mg2+, CA2+, Zn2+, Mn2+, Ba2+, Ni2+, Co2+, Cu2+, and Cr3+ in each of four different buffers, phosphate, 1,4-piperazinediethanesulfonic acid, imidazole, and citrate, indicate that any of these metal cations will fulfill the pyruvate oxidase requirement. Extensive steady state kinetics data were obtained with both Mg2+ and Mn2+. All the data are consistent with the proposition that the only role of the metal is to bind to the cofactor thiamin pyrophosphate (TPP) and that it is the Me2+-TPP complex which is the true cofactor. Values of the Mg2+ and Mn2+ dissociation constants with TPP were determined by EPR spectroscopy and these data were used to calculate the Michaelis constant for the Me2+-TPP complexes. The results show that the Michaelis constants for the Me2+-TPP complexes are independent of the metal cation in the complex. Fluorescence quenching experiments show that the Michaelis constant is equal to the dissociation constant of the Mn2+-TPP complex with the enzyme. It was also shown that Mn2+ will only bind to the enzyme in the presence of TPP and that one Mn2+ binds per subunit. Steady state kinetics experiments with Mn2+ were more complicated than those obtained with Mg2+ because of the formation of an abortive Mn2+-pyruvate complex. Both EPR and steady state kinetics data indicated complex formation with a dissociation constant of about 70 mM.  相似文献   

5.
Electric birefringence of DNA and chromatin. Influence of divalent cations.   总被引:5,自引:0,他引:5  
The effects of divalent cations on the DNA and chromatin conformation have been investigated by electric birefringence and birefringence relaxation measurements at low and constant ionic strength (0.001). An important decrease of the intrinsic optical anisotropy of DNA has been found in the presence of Mn2+ and Cu2+, but not with Mg2+. A complex variation of the mean relaxation time with the ratio I/P of ion to DNA-phosphate molar concentration has been evidenced in the presence of Mn2+ and Cu2+, while the mean relaxation time monotonously decreased in the presence of Mg2+. These observations are interpreted in terms of a specific organization of DNA in a compact, rigid structure, in the presence of Mn2+ and Cu2+, and a non-specific coiling in the presence of Mg2+. Drastic conformational changes encountered by chromatin in the presence of Mg2+ and Mn2+ cations have also been evidenced through electric birefringence measurements. They are interpreted by the formation of a superhelical compact arrangement of nucleosome strings which yielded a reversal of the birefringence sign with respect to the negative anisotropy observed in the presence of Na+ ions. The removal of the histone H1 prevented the appearance of this quaternary structure. More extended fragments of the chromatin chain obtained by ECTHAM chromatography of sonicated chromatin could not afford such compact arrangements.  相似文献   

6.
P Bhargava  D Chatterji 《FEBS letters》1988,241(1-2):33-37
The binding affinity between the substrates ATP and UTP with the purified yeast RNA polymerase II have been studied here in the presence and absence of Mn2+. In the absence of template DNA, both ATP and UTP showed tight binding with the enzyme without preference for any specific nucleotide, unlike Escherichia coli RNA polymerase. Fluorescence titration of the tryptophan emission of the enzyme by nucleoside triphosphate substrates gave an estimated Kd value around 65 microM in the absence of Mn2+ whereas in the presence of Mn2+, the Kd was 20 microM. The effect of substrates on the longitudinal relaxation of the HDO proton in enzyme-substrate complex also yielded a similar Kd value.  相似文献   

7.
Conyers GB  Wu G  Bessman MJ  Mildvan AS 《Biochemistry》2000,39(9):2347-2354
Recombinant IalA protein from Bartonella bacilliformis is a monomeric adenosine 5'-tetraphospho-5'-adenosine (Ap4A) pyrophosphatase of 170 amino acids that catalyzes the hydrolysis of Ap4A, Ap5A, and Ap6A by attack at the delta-phosphorus, with the departure of ATP as the leaving group [Cartwright et al. (1999) Biochem. Biophys. Res. Commun. 256, 474-479]. When various divalent cations were tested over a 300-fold concentration range, Mg2+, Mn2+, and Zn2+ ions were found to activate the enzyme, while Ca2+ did not. Sigmoidal activation curves were observed with Mn2+ and Mg2+ with Hill coefficients of 3.0 and 1.6 and K0.5 values of 0.9 and 5.3 mM, respectively. The substrate M2+ x Ap4A showed hyperbolic kinetics with Km values of 0.34 mM for both Mn2+ x Ap4A and Mg2+ x Ap4A. Direct Mn2+ binding studies by electron paramagnetic resonance (EPR) and by the enhancement of the longitudinal relaxation rate of water protons revealed two Mn2+ binding sites per molecule of Ap4A pyrophosphatase with dissociation constants of 1.1 mM, comparable to the kinetically determined K0.5 value of Mn2+. The enhancement factor of the longitudinal relaxation rate of water protons due to bound Mn2+ (epsilon b) decreased with increasing site occupancy from a value of 12.9 with one site occupied to 3.3 when both are occupied, indicating site-site interaction between the two enzyme-bound Mn2+ ions. Assuming the decrease in epsilon(b) to result from cross-relaxation between the two bound Mn2+ ions yields an estimated distance of 5.9 +/- 0.4 A between them. The substrate Ap4A binds one Mn2+ (Kd = 0.43 mM) with an epsilon b value of 2.6, consistent with the molecular weight of the Mn2+ x Ap4A complex. Mg2+ binding studies, in competition with Mn2+, reveal two Mg2+ binding sites on the enzyme with Kd values of 8.6 mM and one Mg2+ binding site on Ap4A with a Kd of 3.9 mM, values that are comparable to the K0.5 for Mg2+. Hence, with both Mn2+ and Mg2+, a total of three metal binding sites were found-two on the enzyme and one on the substrate-with dissociation constants comparable to the kinetically determined K0.5 values, suggesting a role in catalysis for three bound divalent cations. Ca2+ does not activate Ap4A pyrophosphatase but inhibits the Mn2+-activated enzyme competitively with a Ki = 1.9 +/- 1.3 mM. Ca2+ binding studies, in competition with Mn2+, revealed two sites on the enzyme with dissociation constants (4.3 +/- 1.3 mM) and one on Ap4A with a dissociation constant of 2.1 mM. These values are similar to its Ki suggesting that inhibition by Ca2+ results from the complete displacement of Mn2+ from the active site. Unlike the homologous MutT pyrophosphohydrolase, which requires only one enzyme-bound divalent cation in an E x M2+ x NTP x M2+ complex for catalytic activity, Ap4A pyrophosphatase requires two enzyme-bound divalent cations that function in an active E x (M2+)2 x Ap4A x M2+ complex.  相似文献   

8.
The DNA conformation was studied at different relation between Na+ and Me2+ (Mn2+ or Mg2+) ions in solution at the fixed total ionic strength mu. At low mu the intrinsic viscosity of DNA [eta] decreased to the limited fixed value with the increasing of Mn2+ or Mg2+ concentration (CMe2+). At higher mu greater than or equal to 0.1 M [eta] doesn't depend on CMe2+. The presence of Mn2+ in solution caused a decrease of the optical anisotropy of DNA and the value of epsilon 260 (p) independent on ionic strengths. In contrary, these parameters of DNA didn't change in solution with Mg2+-concentration. The observed differences in the effects of Mn2+ and Mg2+ on the optical properties of the macromolecule suggest that there are different modes of binding of these ions to DNA. It has been concluded, that Mn2+ interacts with bases and phosphate groups of DNA, but Mg2+--only with phosphates. The persistence length of DNA doesn't depend on Me2+ concentration under the conditions of the experiment (mu greater than or equal to 0.005 M).  相似文献   

9.
C L Vermote  S E Halford 《Biochemistry》1992,31(26):6082-6089
In the absence of magnesium ions, the EcoRV restriction endonuclease binds all DNA sequences with equal affinity but cannot cleave DNA. In the presence of Mg2+, the EcoRV endonuclease cleaves DNA at one particular sequence, GATATC, at least a million times more readily than any other sequence. To elucidate the role of the metal ion, the reactions of the EcoRV restriction enzyme were studied in the presence of MnCl2 instead of MgCl2. The reaction at the EcoRV recognition site was slower with Mn2+. This was caused partly by reduced rates for phosphodiester hydrolysis but also by the translocation of the enzyme along the DNA after cleaving it in one strand. In contrast, alternative sites that differ from the recognition site by one base pair were cleaved faster in the presence of Mn2+ relative to Mg2+. When located at an alternative site on the DNA, the EcoRV enzyme bound Mn2+ ions readily but had a very low affinity for Mg2+. The EcoRV nuclease is thus restrained from cleaving DNA at alternate sites in the presence of Mg2+, but the restraint fails to operate with Mn2+. A discrimination factor, which measures the ratio of the activity of the EcoRV nuclease at its recognition site over that at an alternative site, had values of 3 x 10(5) in MgCl2 and 6 in MnCl2.  相似文献   

10.
本文报道用荧光偏振及顺磁共振两种方法研究Mg~(2+)及其它二价金属离子对嵌有H~+-ATP酶的脂酶体不同层次脂质流动性的影响。 (1)顺磁标记探剂5-、12-、16-氮氧基硬脂酸测定结果表明Mg~(2+)和其它二价金属离子都能降低膜脂双分子层表层的流动性。降低流动性的顺序为Mg~(2+)=Ca~(2+)>Sr~(2+)>Cd~(2+)。较深层脂则无明显变化。 (2)荧光探剂7-、12-(9-蒽酰)硬脂酸及16-(9-蒽酰)棕榈酸的测定结果也表明Mg~(2+)和其它二价金属离子降低了膜脂表层的流动性,尤以Mn~(2+)、Ca~(2+)降低流动性最显著,流动性降低的顺序为;Mn~(2+) Ca>Sr~(2+) Mg~(2+) Cd~(2+)。除Mn~(2+)、Ca~(2+)还能影响膜脂深层的流动性外,其它与对照无明显差异。  相似文献   

11.
The fidelity of E. coli DNA polymerase I in the presence of Mg2+ vs Mn2+ was examined at many positions along natural DNA templates, by use of an electrophoretic assay of misincorporation. Although there was an overall greater tendency for misincorporation to occur in Mn2+-activated chain elongation, some specific sites on the template were more prone to misincorporation with Mg2+ and others with Mn2+. This sequence-dependent effect was seen in spite of the finding that the relative rate of incorporation of the correct nucleotide at different positions on the template was essentially the same with Mg2+ and Mn2+. In agreement with previous studies, the fidelity of E. coli pol I was higher at activating, than at inhibiting, concentrations of Mg2+. The results reveal new complexities regarding the role of divalent cation in the control of fidelity in DNA synthesis and attest to the dynamic nature of interactions between DNA polymerase, its substrates and divalent metal activator during the course of polymerization on natural templates.  相似文献   

12.
Cation dependence of restriction endonuclease EcoRI activity   总被引:3,自引:0,他引:3  
Restriction endonuclease EcoRI cleaves the DNA sequence 5'd(-G-A-A-T-T-C-) under optimum digestion conditions. A variation in pH and ionic strength can result in EcoRI activity when 5'd(-A-A-T-T-) is cut. A divalent cation, usually Mg2+, is required for enzyme activity, though Mn2+ can also be used. Eight different cations with ionic radius/charge ratios similar to Mg2+ were tested and Co2+ and Zn2+ were also found to act as cofactors for EcoRI. A comprehensive study has been made of the effect of NaCl and pH on the EcoRI/EcoRI transition in the presence of the above four cations. Generally, a decrease in NaCl and/or an increase in pH caused a decrease in enzyme specificity. The changeover depended on the cation. They may be placed in order of their ability to increase EcoRI specificity thus: Co2+ greater than Zn2+ greater than Mg2+ greater than Mn2+. The Km of EcoRI for ColE1 DNA, in the presence of Co2+, was found to be 0.4 nM, compared to 3 nM with Mg2+, whereas the turnover was only one double-stranded scission/min with Co2+ compared to eight/min with Mg2+. The implications of all these findings on the enzyme's mechanism are discussed.  相似文献   

13.
Interactions between the ligands Mg2+, K+, and substrate and the Na+/K+-activated ATPase were examined in terms of a rapid-equilibrium, random-order, terreactant kinetic scheme for the K+-nitrophenyl phosphatase reaction that is catalyzed by this enzyme. At 37 degrees C and pH 7.5 the derived values for the dissociation constants from the free enzyme were 0.2, 0.08, and 1.4 mM for Mg2+, K+, and substrate, respectively. For Mg2+ interactions, the presence of 20% (v/v) dimethyl sulfoxide (Me2SO) increased the calculated affinity 25-fold; higher concentrations increased affinity still further. Neither reducing the temperature to 20 degrees C nor altering the pH from 6.5 to 8.3 appreciably changed the affinity for Mg2+ in the absence or presence of Me2SO. The Mg2+ sites are thus characterized by an absence of functional groups ionizable in the pH range 6.5-8.3, with binding driven by entropy changes, and with Me2SO, probably through solvation effects on the protein, increasing affinity for Mg2+ close to that for Ca2+ and Mn2+. By contrast, for K+ interactions, the presence of 20% Me2SO increased the calculated affinity only by half; moreover, reducing the temperature to 20 degrees C and the pH to 6.5 both increased affinity and diminished the response to Me2SO. The K+ sites are thus characterized by a marked sensitivity to pH and temperature, presumably through alterations in enzyme conformational equilibria that in turn are modifiable by Me2SO. Inhibition by higher concentrations of Mg2+, which varies inversely with the K+ concentration, was decreased by Me2SO. Finally, for substrate interactions, the presence of 20% Me2SO increased the calculated affinity 4-fold, and, as for Mg2+-binding, neither reducing the temperature nor varying the pH over the range 6.5-8.3 appreciably altered the affinity in the absence or presence of Me2SO. Thus, the substrate sites, like the Mg2+ sites, are characterized by an absence of functional groups ionizable in this range, with binding driven by entropy changes, and with Me2SO increasing affinity for substrate, in this case probably through favoring the partitioning of substrate from the medium into the hydrophobic active site.  相似文献   

14.
The effect of low concentrations of actinomycin D was investigated, using two forms of DNA-dependent RNA polymerase (A and B) purified from normal tissues and experimental tumours, in the presence either of Mn2+ or Mg2+, and homologous DNA. The A enzyme activity was strongly inhibited by the antibiotic in presence of Mg2+ and much less in presence of Mn2+. The B enzyme activity was almost suppressed in presence of both cations. The results here reported provide support that the actinomycin D induce a cellular damage of the same extent in normal and tumour tissues.  相似文献   

15.
16.
General properties of ouabain-sensitive K+ binding to purified Na+,K+-ATPase [EC 3.6.1.3] were studied by a centrifugation method with 42K+. 1) The affinity for K+ was constant at pH values higher than 6.4, and decreased at pH values lower than 6.4. 2) Mg2+ competitively inhibited the K+ binding. The dissociation constant (Kd) for Mg2+ of the enzyme was estimated to be about 1 mM, and the ratio of Kd for Mg2+ to Kd for K+ was 120 : 1. The order of inhibitory efficiency of divalent cations toward the K+ binding was Ba2+ congruent to Ca2+ greater than Zn2+ congruent to Mn2+ greater than Sr2+ greater than Co2+ greater than Ni2+ greater than Mg2+. 3) The order of displacement efficiency of monovalent cations toward the K+ binding in the presence or absence of Mg2+ was Tl+ greater than Rb+ greater than or equal to (K+) greater than NH4+ greater than or equal to Cs+ greater than Na+ greater than Li+. The inhibition patterns of Na+ and Li+ were different from those of other monovalent cations, which competitively inhibited the K+ binding. 4) The K+ binding was not influenced by different anions, such as Cl-, SO4(2-), NO3-, acetate, and glycylglycine, which were used for preparing imidazole buffers. 5) Gramicidin D and valinomycin did not affect the K+ binding, though the former (10 micrograms/ml) inhibited the Na+,K+-ATPase activity by about half. Among various inhibitors of the ATPase, 0.1 mM p-chloromercuribenzoate and 0.1 mM tri-n-butyltin chloride completely inhibited the K+ binding. Oligomycin (10 micrograms/ml) and 10 mM N-ethylmaleimide had no effect on the K+ binding. In the presence of Na+, however, oligomycin decreased the K+ binding by increasing the inhibitory effect of Na+, whether Mg2+ was present or not. 6) ATP, adenylylimido diphosphate and ADP each at 0.2 mM decreased the K+ binding to about one-fourth of the original level at 10 microM K+ without MgCl2 and at 60 microM K+ with 5 mM MgCl2. On the other hand, AMP, Pi, and p-nitrophenylphosphate each at 0.2 mM had little effect on the K+ binding.  相似文献   

17.
The cation-binding properties of the vitamin D-dependent Ca2+-binding protein from pig duodenum were investigated, mainly by flow dialysis. The protein bound two Ca2+ ions with high affinity, and Mg2+, Mn2+ and K+ were all bound competitively with Ca2+ at both sites. The sites were distinguished by their different affinities for Mn2+, the one with the higher affinity being designated A (Kd 0.61 +/- 0.02 microM) and the other B (Kd 50 +/- 6 microM). Competitive binding studies allied to fluorimetric titration with Mg2+ showed that site A bound Ca2+, Mg2+ and K+ with Kd values of 4.7 +/- 0.8 nM, 94 +/- 18 microM and 1.6 +/- 0.3 mM respectively, and site B bound the same three cations with Kd values of 6.3 +/- 1.8 nM, 127 +/- 38 microM and 2.1 +/- 0.6 mM. For the binding of these cations, therefore, there was no significant difference between the two sites. In the presence of 1 mM-Mg2+ and 150 mM-K+, both sites bound Ca2+ with an apparent Kd of 0.5 microM. The cation-binding properties were discussed relative to those of parvalbumin, troponin C and the vitamin D-dependent Ca2+-binding protein from chick duodenum.  相似文献   

18.
Cyclic GMP-stimulated cyclic nucleotide phosphodiesterase purified greater than 13,000-fold to apparent homogeneity from calf liver exhibited a single protein band (Mr approximately 102,000) on polyacrylamide gel electrophoresis under denaturing conditions. Enzyme activity comigrated with the single protein peak on analytical polyacrylamide gel electrophoresis, sucrose density gradient centrifugation, and gel filtration. From the sedimentation coefficient of 6.9 S and Stokes radius of 67 A, an Mr of 201,000 and frictional ratio (f/fo) of 1.7 were calculated, suggesting that the native enzyme is a nonspherical dimer of similar, if not identical, peptides. The effectiveness of Mg2+, Mn2+, and Co2+ in supporting catalytic activity depended on the concentration of cGMP and cAMP present as substrate or effector. Over a wide range of substrate concentrations, optimal concentrations for Mg2+, Mn2+, and Co2+ were about 10, 1, and 0.2 mM, respectively. At concentrations higher than optimal, Mg2+ inhibited activity somewhat; inhibition by Co2+ (and in some instances by Mn2+) was virtually complete. At low substrate concentrations, activity with optimal Mn2+ was equal to or greater than that with Co2+ and always greater than that with Mg2+. With greater than or equal to 0.5 microM cGMP or 20 to 300 microM cAMP and for cAMP-stimulated cGMP or cGMP-stimulated cAMP hydrolysis, activity with Mg2+ greater than Mn2+ greater than Co2+. In the presence of Mg2+, the purified enzyme hydrolyzed cGMP and cAMP with kinetics suggestive of positive cooperativity. Apparent Km values were 15 and 33 microM, and maximal velocities were 200 and 170 mumol/min/mg of protein, respectively. Substitution of Mn2+ for Mg2+ increased apparent Km and reduced Vmax for cGMP with little effect on Km or Vmax for cAMP. Co2+ increased Km and reduced Vmax for both. cGMP stimulated cAMP hydrolysis approximately 32-fold in the presence of Mg2+, much less with Mn2+ or Co2+. In the presence of Mg2+, Mn2+ and Co2+ at concentrations that increased activity when present singly inhibited cGMP-stimulated cAMP hydrolysis. It appears that divalent cations as well as cyclic nucleotides affect cooperative interactions of this enzyme. Whereas Co2+ effects were observed in the presence of either cyclic nucleotide, Mn2+ effects were especially prominent when cGMP was present (either as substrate or effector).  相似文献   

19.
20.
Using methods of IR spectroscopy, light scattering, gel-electrophoresis DNA structural transitions are studied under the action of Cu2+, Zn2+, Mn2+, Ca2+ and Mg2+ ions in aqueous solution. Cu2+, Zn2+, Mn2+ and Ca2+ ions bind both to DNA phosphate groups and bases while Mg2+ ions-only to phosphate groups of DNA. Upon interaction with divalent metal ions studied (except for Mg2+ ions) DNA undergoes structural transition into a compact form. DNA compaction is characterized by a drastic decrease in the volume occupied by DNA molecules with reversible formation of DNA dense particles of well-defined finite size and ordered morphology. The DNA secondary structure in condensed particles corresponds to the B-form family. The mechanism of DNA compaction under Mt2+ ion action is not dominated by electrostatics. The effectiveness of the divalent metal ions studied to induce DNA compaction correlates with the affinity of these ions for DNA nucleic bases: Cu2+>Zn2+>Mn2+>Ca2+>Mg2+. Mt2+ ion interaction with DNA bases (or Mt2+ chelation with a base and an oxygen of a phosphate group) may be responsible for DNA compaction. Mt2+ ion interaction with DNA bases can destabilize DNA causing bends and reducing its persistent length that will facilitate DNA compaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号