首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A number of studies have suggested a role for proliferating cell nuclear antigen (PCNA) in DNA mismatch repair (MMR). However, the majority of mutations in the POL30 gene encoding PCNA that cause MMR defects also cause replication and other repair defects that contribute to the increased mutation rate caused by these mutations. Here, 20 new pol30 mutants were identified and screened for MMR and other defects, resulting in the identification of two mutations, pol30-201 and pol30-204, that appear to cause MMR defects but little if any other defects. The pol30-204 mutation altered an amino acid (C81R) in the monomer-monomer interface region and resulted in a partial general MMR defect and a defect in MSH2-MSH6 binding in vitro. The pol30-201 mutation altered an amino acid (C22Y) located on the surface of the PCNA trimer that slides over the DNA but did not cause a defect in MSH2-MSH6 binding in vitro. The pol30-201 mutation caused an intermediate mutator phenotype. However, the pol30-201 mutation caused almost a complete defect in the repair of AC and GT mispairs and only a small defect in the repair of a "+T" insertion, an effect similar to that caused by an msh6Delta mutation, indicating that pol30-201 primarily effects MSH6-dependent MMR. The chromosomal double mutant msh3-FF>AA msh6-FF>AA eliminating the conserved FF residues of the PCNA interacting motif of these proteins caused a small (<10%) defect in MMR but showed synergistic interactions with mutations in POL30, indicating that the FF>AA substitution may not eliminate PCNA interactions in vivo. These results indicate that the interaction between PCNA and MMR proteins is more complex than was previously appreciated.  相似文献   

2.
In eukaryotes the MSH2-MSH3 and MSH2-MSH6 heterodimers initiate mismatch repair (MMR) by recognizing and binding to DNA mismatches. The MLH1-PMS1 heterodimer then interacts with the MSH proteins at or near the mismatch site and is thought to act as a mediator to recruit downstream repair proteins. Here we analyzed five msh2 mutants that are functional in removing 3' non-homologous tails during double-strand break repair but are completely defective in MMR. Because non-homologous tail removal does not require MSH6, MLH1, or PMS1 functions, a characterization of the msh2 separation of function alleles should provide insights into early steps in MMR. Using the Taq MutS crystal structure as a model, three of the msh2 mutations, msh2-S561P, msh2-K564E, msh2-G566D, were found to map to a domain in MutS involved in stabilizing mismatch binding. Gel mobility shift and DNase I footprinting assays showed that two of these mutations conferred strong defects on MSH2-MSH6 mismatch binding. The other two mutations, msh2-S656P and msh2-R730W, mapped to the ATPase domain. DNase I footprinting, ATP hydrolysis, ATP binding, and MLH1-PMS1 interaction assays indicated that the msh2-S656P mutation caused defects in ATP-dependent dissociation of MSH2-MSH6 from mismatch DNA and in interactions between MSH2-MSH6 and MLH1-PMS1. In contrast, the msh2-R730W mutation disrupted MSH2-MSH6 ATPase activity but did not strongly affect ATP binding or interactions with MLH1-PMS1. These results support a model in which MMR can be dissected into discrete steps: stable mismatch binding and sensing, MLH1-PMS1 recruitment, and recycling of MMR components.  相似文献   

3.
DNA mismatch repair (MMR) is a highly conserved mutation avoidance mechanism that corrects DNA polymerase misincorporation errors. In initial steps in MMR, Msh2-Msh6 binds mispairs and small insertion/deletion loops, and Msh2-Msh3 binds larger insertion/deletion loops. The msh2Δ1 mutation, which deletes the conserved DNA-binding domain I of Msh2, does not dramatically affect Msh2-Msh6-dependent repair. In contrast, msh2Δ1 mutants show strong defects in Msh2-Msh3 functions. Interestingly, several mutations identified in patients with hereditary non-polyposis colorectal cancer map to domain I of Msh2; none have been found in MSH3. To understand the role of Msh2 domain I in MMR, we examined the consequences of combining the msh2Δ1 mutation with mutations in two distinct regions of MSH6 and those that increase cellular mutational load (pol3-01 and rad27). These experiments reveal msh2Δ1-specific phenotypes in Msh2-Msh6 repair, with significant effects on mutation rates. In vitro assays demonstrate that msh2Δ1-Msh6 DNA binding is less specific for DNA mismatches and produces an altered footprint on a mismatch DNA substrate. Together, these results provide evidence that, in vivo, multiple factors insulate MMR from defects in domain I of Msh2 and provide insights into how mutations in Msh2 domain I may cause hereditary non-polyposis colorectal cancer.  相似文献   

4.
H. T. Tran  D. A. Gordenin    M. A. Resnick 《Genetics》1996,143(4):1579-1587
We have investigated the effects of mismatch repair on 1- to 61-bp deletions in the yeast Saccharomyces cerevisiae. The deletions are likely to involve unpaired loop intermediates resulting from DNA polymerase slippage. The mutator effects of mutations in the DNA polymerase δ (POL3) gene and the recombinational repair RAD52 gene were studied in combination with mismatch repair defects. The pol3-t mutation increased up to 1000-fold the rate of extended (7-61 bp) but not of 1-bp deletions. In a rad52 null mutant only the 1-bp deletions were increased (12-fold). The mismatch repair mutations pms1, msh2 and msh3 did not affect 31- and 61-bp deletions in the pol3-t but increased the rates of 7- and 1-bp deletions. We propose that loops less than or equal to seven bases generated during replication are subject to mismatch repair by the PMS1, MSH2, MSH3 system and that it cannot act on loops >=31 bases. In contrast to the pol3-t, the enhancement of 1-bp deletions in a rad52 mutant is not altered by a pms1 mutation. Thus, mismatch repair appears to be specific to errors of DNA synthesis generated during semiconservative replication.  相似文献   

5.
Sokolsky T  Alani E 《Genetics》2000,155(2):589-599
In Saccharomyces cerevisiae, Msh2p, a central component in mismatch repair, forms a heterodimer with Msh3p to repair small insertion/deletion mismatches and with Msh6p to repair base pair mismatches and single-nucleotide insertion/deletion mismatches. In haploids, a msh2Delta mutation is synthetically lethal with pol3-01, a mutation in the Poldelta proofreading exonuclease. Six conditional alleles of msh2 were identified as those that conferred viability in pol3-01 strains at 26 degrees but not at 35 degrees. DNA sequencing revealed that mutations in several of the msh2(ts) alleles are located in regions with previously unidentified functions. The conditional inviability of two mutants, msh2-L560S pol3-01 and msh2-L910P pol3-01, was suppressed by overexpression of EXO1 and MSH6, respectively. Partial suppression was also observed for the temperature-sensitive mutator phenotype exhibited by msh2-L560S and msh2-L910P strains in the lys2-Bgl reversion assay. High-copy plasmids bearing mutations in the conserved EXO1 nuclease domain were unable to suppress msh2-L560S pol3-01 conditional lethality. These results, in combination with a genetic analysis of msh6Delta pol3-01 and msh3Delta pol3-01 strains, suggest that the activity of the Msh2p-Msh6p heterodimer is important for viability in the presence of the pol3-01 mutation and that Exo1p plays a catalytic role in Msh2p-mediated mismatch repair.  相似文献   

6.
A frameshift reversion assay has been established for Schizosaccharomyces pombe, which allows detection of deletions and insertions of nucleotides in a non-repetitive DNA sequence. Compared to wild type, frameshift mutation rates were increased in the mismatch repair (MMR) mutants msh2, msh6, mlh1, and pms1, but not in a swi4 strain (defective in the Msh3 homologue). Rates were also elevated in the DNA nuclease-deficient strains rad2 (defective in the FEN-1 homologue) and exo1. In MutSalpha-deficient strains, msh2 and msh6, most of the reversions were 1bp deletions. In contrast, mlh1 and pms1 mutants, defective in MutLalpha, accumulated significantly more 2bp insertions, preferentially of the type CG to (CG)(2). Such duplications were less frequent in double mutants additionally defective in msh2, msh6, rad2, or exo1. Thus, accumulation of (CG)(2) in MutLalpha-deficient strains depends on the presence of MutSalpha, Rad2 and Exo1.  相似文献   

7.
Huang ME  Rio AG  Galibert MD  Galibert F 《Genetics》2002,160(4):1409-1422
The Pol32 subunit of S. cerevisiae DNA polymerase (Pol) delta plays an important role in replication and mutagenesis. Here, by measuring the CAN1 forward mutation rate, we found that either POL32 or REV3 (which encodes the Pol zeta catalytic subunit) inactivation produces overlapping antimutator effects against rad mutators belonging to three epistasis groups. In contrast, the msh2Delta pol32Delta double mutant exhibits a synergistic mutator phenotype. Can(r) mutation spectrum analysis of pol32Delta strains revealed a substantial increase in the frequency of deletions and duplications (primarily deletions) of sequences flanked by short direct repeats, which appears to be RAD52 and RAD10 independent. To better understand the pol32Delta and rev3Delta antimutator effects in rad backgrounds and the pol32Delta mutator effect in a msh2Delta background, we determined Can(r) mutation spectra for rad5Delta, rad5Delta pol32Delta, rad5Delta rev3Delta, msh2Delta, msh2Delta pol32Delta, and msh2Delta rev3Delta strains. Both rad5Delta pol32Delta and rad5Delta rev3Delta mutants exhibit a reduction in frameshifts and base substitutions, attributable to antimutator effects conferred by the pol32Delta and rev3Delta mutations. In contrast, an increase in these two types of alterations is attributable to a synergistic mutator effect between the pol32Delta and msh2Delta mutations. Taken together, these observations indicate that Pol32 is important in ensuring genome stability and in mutagenesis.  相似文献   

8.
In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. Here, we show that the msh2Delta1 mutation, containing a complete deletion of the conserved mismatch recognition domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Delta1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that domain I in MSH2 contributed a non-specific DNA binding activity while domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA binding. These observations reveal distinct requirements for the MSH2 DNA binding domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding.  相似文献   

9.
Replication fidelity is controlled by DNA polymerase proofreading and postreplication mismatch repair. We have genetically characterized the roles of the 5'-->3' Exo1 and the 3'-->5' DNA polymerase exonucleases in mismatch repair in the yeast Saccharomyces cerevisiae by using various genetic backgrounds and highly sensitive mutation detection systems that are based on long and short homonucleotide runs. Genetic interactions were examined among DNA polymerase epsilon (pol2-4) and delta (pol3-01) mutants defective in 3'-->5' proofreading exonuclease, mutants defective in the 5'-->3' exonuclease Exo1, and mismatch repair mutants (msh2, msh3, or msh6). These three exonucleases play an important role in mutation avoidance. Surprisingly, the mutation rate in an exo1 pol3-01 mutant was comparable to that in an msh2 pol3-01 mutant, suggesting that they participate directly in postreplication mismatch repair as well as in other DNA metabolic processes.  相似文献   

10.
Foury F  Szczepanowska K 《PloS one》2011,6(11):e27847
Mutations in mitochondrial DNA (mtDNA) are an important cause of disease and perhaps aging in human. DNA polymerase gamma (pol γ), the unique replicase inside mitochondria, plays a key role in the fidelity of mtDNA replication through selection of the correct nucleotide and 3'-5' exonuclease proofreading. For the first time, we have isolated and characterized antimutator alleles in the yeast pol γ (Mip1). These mip1 mutations, localised in the 3'-5' exonuclease and polymerase domains, elicit a 2-15 fold decrease in the frequency of mtDNA point mutations in an msh1-1 strain which is partially deficient in mtDNA mismatch-repair. In vitro experiments show that in all mutants the balance between DNA synthesis and exonucleolysis is shifted towards excision when compared to wild-type, suggesting that in vivo more opportunity is given to the editing function for removing the replicative errors. This results in partial compensation for the mismatch-repair defects and a decrease in mtDNA point mutation rate. However, in all mutants but one the antimutator trait is lost in the wild-type MSH1 background. Accordingly, the polymerases of selected mutants show reduced oligonucleotide primed M13 ssDNA synthesis and to a lesser extent DNA binding affinity, suggesting that in mismatch-repair proficient cells efficient DNA synthesis is required to reach optimal accuracy. In contrast, the Mip1-A256T polymerase, which displays wild-type like DNA synthesis activity, increases mtDNA replication fidelity in both MSH1 and msh1-1 backgrounds. Altogether, our data show that accuracy of wild-type Mip1 is probably not optimal and can be improved by specific (often conservative) amino acid substitutions that define a pol γ area including a loop of the palm subdomain, two residues near the ExoII motif and an exonuclease helix-coil-helix module in close vicinity to the polymerase domain. These elements modulate in a subtle manner the balance between DNA polymerization and excision.  相似文献   

11.
B J Merrill  C Holm 《Genetics》1998,148(2):611-624
To identify in vivo pathways that compensate for impaired proliferating cell nuclear antigen (PCNA or Pol30p in yeast) activity, we performed a synthetic lethal screen with the yeast pol30-104 mutation. We identified nine mutations that display synthetic lethality with pol30-104; three mutations affected the structural gene for the large subunit of replication factor C (rfc1), which loads PCNA onto DNA, and six mutations affected three members of the RAD52 epistasis group for DNA recombinational repair (rad50, rad52 and rad57). We also found that pol30-104 displayed synthetic lethality with mutations in other members of the RAD52 epistasis group (rad51 and rad54), but not with mutations in members of the RAD3 nor the RAD6 epistasis group. Analysis of nine different pol30 mutations shows that the requirement for the RAD52 pathway is correlated with a DNA replication defect but not with the relative DNA repair defect caused by pol30 mutations. In addition, mutants that require RAD52 for viability (pol30-100, pol30-104, rfc1-1 and rth1delta) accumulate small single-stranded DNA fragments during DNA replication in vivo. Taken together, these data suggest that the RAD52 pathway is required when there are defects in the maturation of Okazaki fragments.  相似文献   

12.
EXO1 interacts with MSH2 and MLH1 and has been proposed to be a redundant exonuclease that functions in mismatch repair (MMR). To better understand the role of EXO1 in mismatch repair, a genetic screen was performed to identify mutations that increase the mutation rates caused by weak mutator mutations such as exo1Delta and pms1-A130V mutations. In a screen starting with an exo1 mutation, exo1-dependent mutator mutations were obtained in MLH1, PMS1, MSH2, MSH3, POL30 (PCNA), POL32, and RNR1, whereas starting with the weak pms1 allele pms1-A130V, pms1-dependent mutator mutations were identified in MLH1, MSH2, MSH3, MSH6, and EXO1. These mutations only cause weak MMR defects as single mutants but cause strong MMR defects when combined with each other. Most of the mutations obtained caused amino acid substitutions in MLH1 or PMS1, and these clustered in either the ATP-binding region or the MLH1-PMS1 interaction regions of these proteins. The mutations showed two other types of interactions: specific pairs of mutations showed unlinked noncomplementation in diploid strains, and the defect caused by pairs of mutations could be suppressed by high-copy-number expression of a third gene, an effect that showed allele and overexpressed gene specificity. These results support a model in which EXO1 plays a structural role in MMR and stabilizes multiprotein complexes containing a number of MMR proteins. A similar role is proposed for PCNA based on the data presented.  相似文献   

13.
The msh6 mismatch repair gene of Schizosaccharomyces pombe was cloned, sequenced, and inactivated. Strains bearing all combinations of inactivated msh6, msh2, and swi4 (the S. pombe MSH3 ortholog) alleles were tested for their defects in mitotic and meiotic mismatch repair. Mitotic mutation rates were similarly increased in msh6 and msh2 mutants, both for reversion of a base-base substitution as well as of an insertion of one nucleotide in a mononucleotide run. Tetrad analysis and intragenic two-factor crosses revealed that meiotic mismatch repair was affected in msh6 to the same extent as in msh2 background. In contrast, loss of Swi4 likely did not cause a defect in mismatch repair, but rather resulted in reduced recombination frequency. Consistently, a mutated swi4 caused a two- to threefold reduction of recombinants in intergenic crosses, while msh2 and msh6 mutants were not significantly different from wild type. In summary, our study showed that Msh6 plays the same important role as Msh2 in the major mismatch repair pathway of S. pombe, while Swi4 rather functions in recombination.  相似文献   

14.
E. M. Selva  L. New  G. F. Crouse    R. S. Lahue 《Genetics》1995,139(3):1175-1188
A homeologous mitotic recombination assay was used to test the role of Saccharomyces cerevisiae mismatch repair genes PMS1, MSH2 and MSH3 on recombination fidelity. A homeologous gene pair consisting of S. cerevisiae SPT15 and its S. pombe homolog were present as a direct repeat on chromosome V, with the exogenous S. pombe sequences inserted either upstream or downstream of the endogenous S. cerevisiae gene. Each gene carried a different inactivating mutation, rendering the starting strain Spt15(-). Recombinants that regenerated SPT15 function were scored after nonselective growth of the cells. In strains wild type for mismatch repair, homeologous recombination was depressed 150- to 180-fold relative to homologous controls, indicating that recombination between diverged sequences is inhibited. In one orientation of the homeologous gene pair, msh2 or msh3 mutations resulted in 17- and 9.6-fold elevations in recombination and the msh2 msh3 double mutant exhibited an 43-fold increase, implying that each MSH gene can function independently in trans to prevent homeologous recombination. Homologous recombination was not significantly affected by the msh mutations. In the other orientation, only msh2 strains were elevated (12-fold) for homeologous recombination. A mutation in MSH3 did not affect the rate of recombination in this orientation. Surprisingly, a pms1 deletion mutant did not exhibit elevated homeologous recombination.  相似文献   

15.
RAG. Reenan  R. D. Kolodner 《Genetics》1992,132(4):975-985
The MSH1 and MSH2 genes of Saccharomyces cerevisiae are predicted to encode proteins that are homologous to the Escherichia coli MutS and Streptococcus pneumoniae HexA proteins and their homologs. Disruption of the MSH1 gene caused a petite phenotype which was established rapidly. A functional MSH1 gene present on a single-copy centromere plasmid was incapable of rescuing the established msh1 petite phenotype. Analysis of msh1 strains demonstrated that mutagenesis and large-scale rearrangement of mitochondrial DNA had occurred. 4',6-Diamidino-2-phenylindole (DAPI) staining of msh1 yeast revealed an aberrant distribution of mtDNA. Haploid msh2 mutants displayed an increase of 85-fold in the rate of spontaneous mutation to canavanine resistance. Sporulation of homozygous msh2/msh2 diploids gave rise to a high level of lethality which was compounded during increased vegetative growth prior to sporulation. msh2 mutations also affected gene conversion of two HIS4 alleles. The his4x mutation, lying near the 5' end of the gene, was converted with equal frequency in both wild-type and msh2 strains. However, many of the events in the msh2 background were post-meiotic segregation (PMS) events (46.4%) while none (< 0.25%) of the aberrant segregations in wild type were PMS events. The his4b allele, lying 1.6 kb downstream of his4x, was converted at a 10-fold higher frequency in the msh2 background than in the corresponding wild-type strain. Like the his4x allele, his4b showed a high level of PMS (30%) in the msh2 background compared to the corresponding wild-type strain where no (< 0.26%) PMS events were observed. These results indicate that MSH1 plays a role in repair or stability of mtDNA and MSH2 plays a role in repair of 4-bp insertion/deletion mispairs in the nucleus.  相似文献   

16.
Kirchner JM  Tran H  Resnick MA 《Genetics》2000,155(4):1623-1632
The DNA polymerases delta and epsilon are the major replicative polymerases in the yeast Saccharomyces cerevisiae that possess 3' --> 5' exonuclease proofreading activity. Many errors arising during replication are corrected by these exonuclease activities. We have investigated the contributions of regions of Polepsilon other than the proofreading motifs to replication accuracy. An allele, pol2-C1089Y, was identified in a screen of Polepsilon mutants that in combination with an exonuclease I (exo1) mutation could cause a synergistic increase in mutations within homonucleotide runs. In contrast to other polymerase mutators, this allele specifically results in insertion frameshifts. When pol2-C1089Y was combined with deletions of EXO1 or RAD27 (homologue of human FEN1), mutation rates were increased for +1 frameshifts while there was almost no effect on -1 frameshifts. On the basis of genetic analysis, the pol2-C1089Y mutation did not cause a defect in proofreading. In combination with a deletion of the mismatch repair gene MSH2, the +1 frameshift mutation rate for a short homonucleotide run was increased nearly 100-fold whereas the -1 frameshift rate was unchanged. This suggests that the Pol2-C1089Y protein makes +1 frameshift errors during replication of homonucleotide runs and that these errors can be corrected by either mismatch repair (MMR) or proofreading (in short runs). This is the first report of a +1-specific mutator for homonucleotide runs in vivo. The pol2-C1089Y mutation defines a functionally important residue in Polepsilon.  相似文献   

17.
In order to improve our understanding of the role of the yeast MSH1 gene in error avoidance in mitochondrial DNA, two msh1 alleles were constructed, which encode proteins with amino acid substitutions in an ATP-binding domain that is highly conserved among MutS homologs. Here, we report that moderate overexpression of the msh1-R813W or msh1-G776D allele, in strains which also carry the wild-type MSH1 allele, slightly increases the frequency of mutations conferring resistance to erythromycin (E(r)) and elevates the frequency of alterations within a polyGT tract present in mitochondrial DNA (mtDNA). This result indicates that the mutant alleles confer a dominant mitochondrial mutator phenotype and strongly suggests that the ATP-binding domain plays a crucial role in the in vivo function of Msh1p. Interestingly, we have found that overexpression of wild-type MSH1 has opposite effects on the stability of polyGT vs. polyAT tracts present in mtDNA; excess of Msh1p slightly increases the stability of polyGT tracts, whereas the stability of polyAT tracts is dramatically decreased. We show that although overexpression of msh1-R813W or msh1-G776D also results in a marked overall increase in the frequency of alterations in polyAT tracts, the spectrum of alterations differs from that found in cells overexpressing MSH1; large deletions predominate in the latter case, while 2-bp deletions are generated in cells that overproduce the mutant msh1p. This result strongly suggests that the mutations in the ATP binding domain change the specificity of the protein with respect to the recognition of potentially mutagenic structures in mtDNA.  相似文献   

18.
Hereditary nonpolyposis colorectal cancer (HNPCC) is due to defects in DNA mismatch repair (MMR) genes MSH2, MLH1, MSH6, and to a lesser extent PMS2. Of 466 suspected HNPCC families, we defined 54 index patients with either tumors of high microsatellite instability (MSI-H) and/or loss of expression for either MLH1, MSH2, and/or MSH6, but without a detectable pathogenic point mutation in these genes. This study cohort was augmented to 64 patients by 10 mutation-negative index patients from Amsterdam families where no tumors were available. Deletion/duplication screening using the multiplex ligation-dependent probe amplification (MLPA) revealed 12 deletions in MSH2 and two deletions in MLH1. These deletions constitute 17% of pathogenic germline alterations but elucidate the susceptibility to HNPCC in only 22% of the mutation-negative study cohort, pointing towards other mutation mechanisms for an inherited inactivation of MLH1 or MSH2. We describe here four novel deletions. One novel and one known type of deletion were found for three and two unrelated families, respectively. MLPA analysis proved a reliable method for the detection of genomic deletions in MLH1 and MSH2; however, sequence variations in the ligation-probe binding site can mimic single exon deletions.  相似文献   

19.
The mismatch repair (MMR) system is critical not only for the repair of DNA replication errors, but also for the regulation of mitotic and meiotic recombination processes. In a manner analogous to its ability to remove replication errors, the MMR system can remove mismatches in heteroduplex recombination intermediates to generate gene conversion events. Alternatively, such mismatches can trigger an MMR-dependent antirecombination activity that blocks the completion of recombination, thereby limiting interactions between diverged sequences. In Saccharomyces cerevisiae, the MMR proteins Msh3, Msh6, and Mlh1 interact with proliferating cell nuclear antigen (PCNA), and mutations that disrupt these interactions result in a mutator phenotype. In addition, some mutations in the PCNA-encoding POL30 gene increase mutation rates in an MMR-dependent manner. In the current study, pol30, mlh1, and msh6 mutants were used to examine whether MMR-PCNA interactions are similarly important during mitotic and meiotic recombination. We find that MMR-PCNA interactions are important for repairing mismatches formed during meiotic recombination, but play only a relatively minor role in regulating the fidelity of mitotic recombination.  相似文献   

20.
S(N)1-type alkylating agents, like N-methyl-N-nitrosourea (MNU) and N-ethyl-N-nitrosourea (ENU), are potent mutagens. Exposure to alkylating agents gives rise to O(6)-alkylguanine, a modified base that is recognized by DNA mismatch repair (MMR) proteins but is not repairable, resulting in replication fork stalling and cell death. We used a somatic mutation detection assay to study the in vivo effects of alkylation damage on lethality and mutation frequency in developing zebrafish embryos. Consistent with the damage-sensing role of the MMR system, mutant embryos lacking the MMR enzyme MSH6 displayed lower lethality than wild-type embryos after exposure to ENU and MNU. In line with this, alkylation-induced somatic mutation frequencies were found to be higher in wild-type embryos than in the msh6 loss-of-function mutants. These mutations were found to be chromosomal aberrations that may be caused by chromosomal breaks that arise from stalled replication forks. As these chromosomal breaks arise at replication, they are not expected to be repaired by non-homologous end joining. Indeed, Ku70 loss-of-function mutants were found to be equally sensitive to ENU as wild-type embryos. Taken together, our results suggest that in vivo alkylation damage results in chromosomal instability and cell death due to aberrantly processed MMR-induced stalled replication forks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号