首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
1. The variation in cellular glycogen content of differentiating cells derived from myxamoebae that initially contained a wide range of glycogen contents (0.047-5.56mg of glycogen/10(8) myxamoebae) has been studied. 2. Myxamoebae that initially contained 0.047-3.62mg of glycogen/10(8) myxamoebae all gave rise to fruiting bodies that contained similar amounts of glycogen (0.06-0.11mg of glycogen/10(8) cells) but myxamoebae that initially contained 5.56mg of glycogen formed fruiting bodies containing 0.5mg of glycogen/10(8) cells. 3. Despite the high net rate of glycogen disappearance (during cell differentiation) from cells that contained more than 2mg of glycogen/10(8) cells initially, there were still significant variations in the rate of glycogen synthesis. The rate of glycogen synthesis reached a peak at the aggregation stage. 4. Evidence is presented showing that the rate of this synthesis of glycogen is controlled by factors other than the intracellular concentration of glycogen synthetase. 5. Our results are discussed in the context of the theory that the rates of glycogen synthesis and degradation act as a control mechanism for cell differentiation. 6. Criteria are discussed for deciding whether a biochemical event is causally or secondarily related to morphogenesis.  相似文献   

2.
1. Myxamoebae of the cellular slime mould Dictyostelium discoideum Ax-2 that are grown in axenic medium containing 86mm-glucose have seven times the glycogen content of the same myxamoebae grown in the same medium but lacking added carbohydrate. 2. During the transition from the exponential to the stationary phase of growth in axenic medium containing glucose myxamoebae preferentially synthesize glycogen and can have as much as three times the glycogen content during the stationary phase as they have during the exponential phase of growth. 3. The rate of glycogen degradation by myxamoebae is, under all conditions of growth, small compared with the rate of glycogen accumulation and the changes in glycogen content thus reflect altered rates of glycogen synthesis. 4. There is no correlation between the rate of glycogen synthesis by myxamoebae and the glycogen synthetase content of the myxamoebae. 5. The activity of glycogen synthetase of D. discoideum is inhibited by a physiological concentration of ATP and this inhibition is overcome by glucose 6-phosphate. Both effects are especially marked at physiological concentrations of UDP-glucose. 6. The rate of glycogen accumulation by myxamoebae growing exponentially in axenic media can be satisfactorily accounted for in terms of the known intracellular concentrations of glucose 6-phosphate, UDP-glucose and glycogen synthetase. The rate-limiting factors controlling glycogen synthesis by the myxamoebae are apparently the substrate (UDP-glucose) and effector (glucose 6-phosphate and ATP) concentrations rather than the amount of the enzyme.  相似文献   

3.
1. When growing Mycobacterium tuberculosis BCG was exposed to 0.5-10mug. of isoniazid/ml. there was intracellular accumulation of soluble carbohydrate, combined phosphate and substances absorbing at 260mmu. Yellow pigments were formed when modified Sauton medium was used, but not with Proskauer & Beck medium. These processes were apparent after 1hr. but were more marked after about 6hr. These effects were not found with an isoniazid-resistant strain. 2. After 6hr. exposure of the sensitive strain to 10mug./ml. there was little change in the amounts (per g. of insoluble nitrogen) of total lipid, glycolipid, RNA, DNA or of carbohydrate in the nucleic acid fractions. 3. The major accumulation was of alphaalpha'-trehalose. There was also accumulation of glucose 6-phosphate, glucose 1-phosphate, fructose 6-phosphate, trehalose 6-phosphate (tentatively identified), a polysaccharide containing only glucose, and an oligosaccharide containing glucose and glucose 6-phosphate, but not of glycerol and glycerol 3-phosphate. The u.v.-absorbing materials appeared to be nucleotide sugar derivatives. 4. In Mycobacterium smegmatis a similar accumulation of trehalose occurred on exposure to isoniazid, but there was little accumulation of other compounds. 5. No evidence could be found that isoniazid specifically affected the oxidation of glycerol or glycerol 3-phosphate. 6. It is suggested that the primary action of isoniazid on mycobacteria may be partial inhibition of a reaction in some central area of metabolism, such as glycolysis.  相似文献   

4.
1. Glycogen phosphorylase of locust fat-body was partially purified by differential centrifugation and dissociation from glycogen particles at two pH values. 2. Optimum activity was obtained at pH6.6-6.7. 3. The calculated apparent K(m) values for glycogen and glucose 1-phosphate were 0.08% and 10-13mm respectively. 4. 5'-AMP activated in the range 5mum-1mm. 5. Glucose 6-phosphate is a competitive inhibitor for the substrate glucose 1-phosphate (K(i)=1.7mm). 5'-AMP abolishes this inhibition. Glucose weakly inhibits (K(i)=25-30mm), but trehalose does not inhibit even at 100mm. 6. It is suggested that glucose 6-phosphate is a major regulator of glycogen phosphorylase activity in locust fat-body.  相似文献   

5.
1. Methods of obtaining myxamoebae of Dictyostelium discoideum strain Ax-2 (ATCC 24397) with glycogen contents in the range 0.05-5mg of glycogen/10(8) cells are described. The changes in cellular glycogen, protein and RNA content during the differentiation of such myxamoebae were determined. 2. Myxamoebal glycogen is not conserved during differentiation and gluconeogenesis may occur even in cells that contain a large amount of glycogen initially. 3. There is a marked net loss of cellular protein and RNA during differentiation and associated with this there are also marked decreases in the sizes of the intracellular pools of amino acids, acid-soluble proteins and pentose-containing materials. 4. During the early stages of development some protein and pentose(s) are excreted, but this cannot account for the decreased cellular content of protein and RNA. 5. There is a linear rate of production of NH(3) during development, and oxidation appears to be the fate of the major portion of the degraded protein and RNA. 6. However, provision of an alternative metabolizable energy source (glycogen) has little effect on the rate or extent of protein or RNA breakdown or on the changes in the sizes of the intracellular pools of amino acids, acid-soluble proteins and pentose-containing materials. 7. It is concluded that during development there is a requirement for the destruction of specific RNA and protein molecules for reasons other than the provision of oxidizable substrates. 8. The kinetic model of Wright et al. (1968) is discussed in relation to these changes in macromolecular content.  相似文献   

6.
The uptake of nutrients (glucose, glutamine, and N-acetylglucosamine), the intracellular concentrations of metabolites (glucose-6-phosphate, cyclic AMP, amino acids, trehalose, and glycogen) and cell wall composition were studied in Candida albicans. These analyses were carried out with exponential-phase, stationary-phase, and starved yeast cells, and during germ-tube formation. Germ tubes formed during a 3-h incubation of starved yeast cells (0.8 X 10(8) cells/mL) at 37 degrees C during which time the nutrients glucose plus glutamine or N-acetylglucosamine (2.5 mM of each) were completely utilized. Control incubations with these nutrients at 28 degrees C did not form germ tubes. Uptake of N-acetylglucosamine and glutamine was inhibited by cycloheximide which suggests that de novo protein synthesis was required for the induction of these uptake systems. The glucose-6-phosphate content varied from 0.4 nmol/mg dry weight for starved cells to 2-3 nmol/mg dry weight for growing yeast cells and germ tube forming cells. Trehalose content varied from 85 nmol/mg dry weight (growing yeast cells and germ tube forming cells) to 165 nmol/mg weight (stationary-phase cells). The glycogen content decreased during germ-tube formation (from 800 to 600 nmol glucose equivalent/mg dry weight) but increased (to 1000 nmol glucose equivalent/mg dry weight) in the control incubation of yeast cells. Cyclic AMP remained constant throughout germ-tube formation at 4-6 pmol/mg dry weight. The total amino acid pool was similar in exponential, starved, and germ tube forming cells but there were changes in the amounts of individual amino acids. The overall cell wall composition of yeast cells and germ tube forming cells were similar: lipid (2%, w/w); protein (3-6%), and carbohydrate (77-85%). The total carbohydrates were accounted for as the following fractions: alkali-soluble glucan (3-8%), mannan (20-23%), acid-soluble glucan (24-27%), and acid-insoluble glucan (18-26%). The relative amounts of the alkali-soluble and insoluble glucan changed during starvation of yeast cells, reinitiation of yeast-phase growth, and germ-tube formation. Analysis of the insoluble glucan fraction from cells labelled with [14C]glucose during germ-tube formation showed that the chitin content of the cell wall increased from 0.6% to 2.7% (w/w).  相似文献   

7.
Several factors may control trehalose and glycogen synthesis, like the glucose flux, the growth rate, the intracellular glucose-6-phosphate level and the glucose concentration in the medium. Here, the possible relation of these putative inducers to reserve carbohydrate accumulation was studied under well-defined growth conditions in nitrogen-limited continuous cultures. We showed that the amounts of accumulated trehalose and glycogen were regulated by the growth rate imposed on the culture, whereas other implicated inducers did not exhibit a correlation with reserve carbohydrate accumulation. Trehalose accumulation was induced at a dilution rate (D)相似文献   

8.
A humanized clone containing the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase (otsA/B) has been constructed. Using the Gateway Cloning System (Invitrogen, Inc.), the otsA/B genes have been placed under the control of the CMV promoter (pEXPcmv-otsA/B) or the CMV promoter and the tet operator (pEXP cmv TetO-otsA/B). The pEXPcmv-otsA/B clone has been introduced into 293H cells using LIPOFECTAMINE 2000 and the intracellular concentration of trehalose has been evaluated. The 293H cells accumulate 4-5 microg trehalose/mg dry weight and this concentration increases to 7-10 microg trehalose/mg dry weight if trehalose is included in the growth medium. The pEXPcmv TetO-otsA/B clone has been transfected into 293FTetR:Hyg cells which contain the tet repressor integrated into the genome. When these transfected cells are grown in the absence of tetracycline, no intracellular trehalose is detected. Inclusion of 0.3 microg/ml tetracycline in the growth medium results in the accumulation of 11-14 microg trehalose/mg dry weight, a value which increases to 19-20 microg trehalose/mg dry weight if trehalose is included in the growth medium. The data for the 293FTetR:Hyg cells indicate that intracellular trehalose accumulates in response to the addition of tetracycline. This system will allow us to manipulate the intracellular concentration of trehalose and to evaluate the desiccation tolerance of these cells as a function of intracellular trehalose concentration.  相似文献   

9.
1. Glycogen, nucleotides and glycolytic intermediates and products were measured before and during tetanus in the hamstrings-muscle groups of normal (C3H) and phosphorylase kinase-deficient (ICR/IAn) mice. 2. Phosphorylase kinase-deficient muscles contained 3-4-fold more glycogen and sustained a larger (approx. 2-fold), more rapid (11 +/- 2 ng/s faster) and more prolonged glycogenolysis during 120s tetanus despite their lack of phosphorylase a. 3. No significant change in total adenine nucleotide contents occurred during tetanus in either strain, but there was a 60-100-fold rise in IMP concentration to approx. 2mM in both strains. The initial rate of IMP formation was 6-fold more rapid (112 nmol/s per g) in phosphorylase kinase-deficient muscle. 4. Adenylosuccinate content rose to 36 nmol/g in phosphorylase kinase-deficient muscle and to 9 nmol/g in normal muscle at 45s tetanus, but then fell. 5. In phosphorylase kinase-deficient muscle, glucose 6-phosphate, a powerful phosphorylase inhibitor, was 56% of that in normal muscle. 6. The mass-action ratio of the phosphoglucomutase-catalysed reaction [glucose 6-phosphate]/[glucose 1-phosphate] was markedly lower than Keq. (approx. 17) in relaxed muscle of both strains (approx. 5-7), but rose significantly during tetanus to the value for Keq. 7. The data for IMP satisfy the criteria put forward by Rahim, Perrett & Griffiths [(1976) FEBS Lett. 69, 203-206] for a nucleotide activator of phosphorylase b: it should be present at a higher concentration in phosphorylase kinase-deficient muscle, its concentration should rise during muscle work, and it should attain a concentration comparable with its activation constant for phosphorylase b.  相似文献   

10.
The levels of glycogen, free trehalose, and lipid-bound trehalose were compared in Mycobacterium smegmatis grown under various conditions of nitrogen limitation. In a mineral salts medium supplemented with yeast extract and containing fructose as the carbon source, the accumulation of glycogen increased dramatically as the NH(4)Cl content of the medium was lowered. However, levels of free trehalose remained relatively constant. Cells were grown in low nitrogen medium and were then shifted to medium containing high nitrogen. Under these conditions, there was a rapid accumulation of glycogen in low nitrogen, and this glycogen was rapidly depleted when cells were placed in high nitrogen medium. Again the concentration of free trehalose remained fairly constant. However, when cells were grown in low nitrogen medium with [(14)C]fructose and then transferred to high nitrogen medium with unlabeled fructose, the specific radioactivity (counts per minute per micromole) of the free trehalose fell immediately, indicating that it was being synthesized and turned over continually. On the other hand, the specific radioactivity of the glycogen and bound trehalose declined much more slowly, suggesting that these two compounds were not turning over as rapidly or were being synthesized at a much slower rate. Experiments on the incorporation of [(14)C]fructose into glycogen and trehalose indicated that cells in high nitrogen medium synthesized much less glycogen than those in low nitrogen. However, synthesis of both free trehalose and bound trehalose was the same in both cases. The specific enzymatic activities of the glycogen synthetase and the trehalose phosphate synthetase varied somewhat from one growth condition to another, but there was no correlation between enzymatic activity and the amount of glycogen or trehalose, suggesting that changes in glycogen levels were not due to increased synthetic capacity. The glycogen synthetase was purified about 35-fold and its properties were examined. This enzyme was specific for adenosine diphosphate glucose as the glucosyl donor.  相似文献   

11.
Trehalose is proposed to serve multiple physiological roles in insects. However, its importance remains largely unconfirmed. In the present paper, we knocked down either a trehalose biosynthesis gene (trehalose-6-phosphate synthase, LdTPS) or each of three degradation genes (soluble trehalases LdTRE1a, LdTRE1b or membrane-bound LdTRE2) in Leptinotarsa decemlineata by RNA interference (RNAi). Knockdown of LdTPS decreased trehalose content and caused larval and pupal lethality. The LdTPS RNAi survivors consumed a greater amount of foliage, obtained a heavier body mass, accumulated more glycogen, lipid and proline, and had a smaller amount of chitin compared with the controls. Ingestion of trehalose but not glucose rescued the food consumption increase and larval mass rise, increased survivorship, and recovered glycogen, lipid and chitin to the normal levels. In contrast, silencing of LdTRE1a increased trehalose content and resulted in larval and pupal lethality. The surviving LdTRE1a RNAi hypomorphs fed a smaller quantity of food, had a lighter body weight, depleted lipid and several glucogenic amino acids, and contained a smaller amount of chitin. Neither trehalose nor glucose ingestion rescued these LdTRE1a RNAi defects. Silencing of LdTRE1b caused little effects. Knockdown of LdTRE2 caused larval death, increased trehalose contents in several tissues and diminished glycogen in the brain-corpora cardiaca-corpora allata complex (BCC). Feeding glucose but not trehalose partially rescued the high mortality rate and recovered glycogen content in the BCC. It seems that trehalose is involved in feeding regulation, sugar absorption, brain energy supply and chitin biosynthesis in L. decemlineata larvae.  相似文献   

12.
1. Saccharomyces carlsbergensis cells were found to store about 10% of the glucose taken up as glycogen during oscillatory glycolysis. 2. Under the same conditions and during all phases of carbohydrate limited growth, glycogen synthase (E.C. 2.4.1.11), in the absence of glucose 6-phosphate, had only 5--20% activity compared to the activity in the presence of 10 mM of the effector, indicative for the D-form of the enzyme. 3. Inorganic phosphate (intracellular concentration 19--23 mumoles/g yeast) strongly inhibited glycogen synthase both in the absence of glucose 6-phosphate and competitively to this effector. 4. In this yeast, the D-form of glycogen synthase had to be active to account for the high rate of glycogen synthesis. The resulting sensitivity to glucose 6-phosphate may lead to a pulsatory action of the enzyme during oscillatory glycolysis.  相似文献   

13.
The influence of starvation on carbohydrate metabolism in fifth instar larvae of Manduca sexta was studied. The percentage of active fat body glycogen phosphorylase increased from 10% to approximately 50% within 3 h of starvation; afterward the enzyme was slowly inactivated. The increase of phosphorylase activity might have been caused by a peptide(s) from the CC. The amount of fat body glycogen in starved animals decreased over 24 h by approximately 20 mg. The released glucose molecules seem to be converted mainly to trehalose because the hemolymph trehalose concentration in starved animals was always slightly higher than in the fed controls, and the glucose concentration decreased even when phosphorylase was activated. The chitosan content in starved larvae increased during the first 9 h of treatment to the same extent as in fed controls. It is suggested that fat body glycogen phosphorylase was activated during starvation to provide substrates for chitin synthesis and energy metabolism.  相似文献   

14.
Aggregation-competent myxamoebae of the cellular slime mold Dictyostellium discoideum are known to exhibit two responses to extracellular pulses of 3′5′-cyclic AMP: an immediate chemotactic movement; and a delayed generation of intracellular cyclic AMP which is subsequently released into the medium. The mechanism of the latter, the so-called signalling response, may depend on alterations in intracellular metabolite levels and is the subject of this communication.Myxamoebae of the wild-type strain NC-4 of D. discoideum were suspended in an aerated, stirred 17 mM potassium phosphate buffer. pH 6.0, at a concentration of approx. 6 · 10?7 cells/ml (8%, v/v) at 25°C and were pulsed with 1. 10?8—1 · 10?7 M cyclic AMP at 10–20-min intervals for periods of 3–5 h over incubation of 4–9 h. Suspensions were monitored continuously for transient turbidity decreases following the cyclic AMP pulses as an indication of the magnitude and duration of the cellular response to cyclic AMP. When the pattern of turbidity decrease indicated that a signalling response had developed, samples were withdrawn at 10–15-s intervals from the suspension, inactivated with perchloric acid, and analyzed for cyclic AMP, ATP, ADP, AMP, pyruvate, and glucose 6-phosphate. In separate experiments, steady-state oxygen tension was monitored along with turbidity to detect possible changes in respiratory rate.The following consistent patterns were observed after the added cyclic AMP pulse: a transient increase in the ADP level which reaches maximum between 0.7 and 1.7 min; transient decreases in ATP and pyruvate which concide with and approximately equal the magnitude of the increase in ADP; a later increase in glucose 6-phosphate which reaches maximum approx. 2 min after the ADP  相似文献   

15.
(1) The features of MgATP-dependent Ca2+ accumulation under stimulation with glucose 6-phosphate were studied in rat kidney microsomes. (2) Ca2+ accumulated in the presence of MgATP alone does not exceed approx. 2 nmol/mg protein. (3) Glucose 6-phosphate markedly stimulates Ca2+ accumulation, up to steady-state levels approx. 15-fold higher than in its absence. (4) The hydrolysis of glucose 6-phosphate by glucose-6-phosphatase is essential for the stimulation, as shown by inhibiting the glucose 6-phosphate hydrolysis with adequate concentrations of vanadate. Inorganic phosphate is accumulated in microsomal vesicles during glucose 6-phosphate-stimulated Ca2+ uptake in equimolar amounts with respects to Ca2+. (5) Increasing concentrations of glucose 6-phosphate result in increasing stimulations of Ca2+ uptake, until a maximal Ca2(+)-loading capacity of approx. 27 nmol/mg microsomal protein is reached. It is suggested that the enlargement of the kidney microsomal Ca2+ pool induced by glucose 6-phosphate (an important metabolite in kidney) might play a role in the regulation of Ca2+ homeostasis in kidney tubular cells.  相似文献   

16.
In the cockroaches Periplaneta americana, Periplaneta australasiae, Leucophaea maderae, and Nauphoeta cinerea, undiluted haemolymph, undiluted haemolymph to which 10% solid trehalose was added, and haemolymph diluted 100 or more times with 1% trehalose solution showed approximately equal trehalase activities (3 to 8 mg/ml per hr). No evidence for the presence of a trehalase inhibitor was found.Freshly drawn haemolymph of Periplaneta americana contained 14 to 16 mg trehalose/ml, which on standing was hydrolyzed to glucose at a rate of 4 to 8 mg/ml per hr. In this cockroach, the rate of haemolymph trehalose turnover was only 1.3 mg/ml per hr. This means that in vitro trehalose is hydrolyzed by undiluted haemolymph at several times the rate at which it is replaced in the haemolymph of the intact insect. The mechanism through which trehalose and trehalase can coexist in the haemolymph of the intact cockroach remains therefore unexplained.  相似文献   

17.
1. Mice treated with ethionine (intraperitoneally, 5mg./day for 4 days or 10mg./day for 3 days) showed a profound loss of hepatic glycogen, a decrease of glycogen synthetase activity, a development of hypoglycaemia, a two- to five-fold increase in the activity of glucose 6-phosphate dehydrogenase but no change in 6-phosphogluconate dehydrogenase and an earlier manifestation of the solubilization of phosphorylase as compared with glycogen synthetase. The administration of ATP did not prevent these effects. 2. During the early post-injection period (2-3 days) there was a further enhancement of the activity of glucose 6-phosphate dehydrogenase (tenfold) in the liver and a clear elevation of 6-phosphogluconate dehydrogenase activity (twofold). Subsequently, the glycogen concentration was restored, followed by an earlier reassociation of glycogen particle with phosphorylase than with glycogen synthetase, along with a disappearance of ethionine effect at about the eighteenth day. 3. Glucose 6-phosphate dehydrogenase from both control and ethionine-treated animals showed a marked preference for glucose 6-phosphate as substrate rather than for galactose 6-phosphate, whose rate of oxidation was only 10% of that of the glucose 6-phosphate. 4. Since actinomycin D, puromycin, 5-fluorouracil and dl-p-fluorophenylalanine failed to block the ethionine-enhanced glucose 6-phosphate dehydrogenase activity, the possibility that new enzyme protein synthesis is responsible for the effect is doubtful.  相似文献   

18.
Hormonal and substrate regulation of hepatic glycogen accumulation was evaluated in primary cultures of hepatocytes prepared from 1-day-fasted rats. Hepatocytes were cultured in media containing 5 mM-glucose and 10 mM-lactate and then exposed to 100 nM-dexamethasone for 4 h before an increase in glucose concentration and the addition of insulin. When this protocol was used to mimic the post-prandial state in vivo, net glycogen accumulation (over 2 h) and insulin (10 nM) effects were linear at physiological (5-10 mM) and supraphysiological (20-30 mM) glucose concentrations. To define the role of substrates in glycogen accumulation, hepatocytes were incubated in a buffered salt solution containing 10 mM-glucose and either 10 mM-lactate or 5 mM-glutamine, or both. In the absence of hormones, net glycogen accumulation was increased by 59%, 83%, and 127% by the addition of lactate, glutamine, and lactate plus glutamine respectively, compared with incubations with glucose alone, and 6-fold in the presence of substrates, insulin and dexamethasone. Labelling with [3-3H]glucose and [U-14C]glucose showed that in the absence of hormones approx. 50% of glycogen formation came from glucose via the direct pathway and the remainder from glucose via the indirect pathway or from non-glucose precursors, or both. Insulin-dependent enhancement of glycogen formation is through stimulation of both the direct and indirect pathways, and dexamethasone-dependent stimulation occurs through stimulation of both these pathways of glycogen formation from glucose as well as from non-glucose precursors. Lactate serves as a gluconeogenic C3 precursor for the observed enhanced glycogen formation, whereas glutamine-dependent enhancement of glycogen accumulation occurs primarily through a stimulation of the direct and indirect pathways of glycogen formation from glucose.  相似文献   

19.
L Plesner 《FEBS letters》1984,172(2):149-154
When glucose was added to fasted human leukocytes in a final concentration of 0.5-5 mM there was a phase of glycogen synthesis followed by a phase of glycogen breakdown. The duration of the phase of net glycogen synthesis increased with increasing concentrations of glucose applied, but the net rate of glycogen synthesis was inversely related to this figure and decreased from approx. 7 nmol/10(7) cells per min at 0.5 mM glucose to an average of 4 nmol/10(7) cells per min at 5 mM glucose.  相似文献   

20.
B Brand  W Boos 《Applied microbiology》1989,55(9):2414-2415
At high osmolarity, Escherichia coli synthesizes trehalose intracellularly, irrespective of the nature of the carbon source. Synthesis proceeds via the transfer of UDP-glucose to glucose 6-phosphate, yielding trehalose 6-phosphate, followed by its dephosphorylation to trehalose (H.M. Giaeyer, B.O. Styrvold, I. Kaasen, and A.R. Strøm, J. Bacteriol. 170:2841-2849, 1988). This reaction was exploited to preparatively synthesize [14C]trehalose from exogenous [14C]glucose by using intact bacteria of a mutant (DF214) that could not metabolize glucose. The total yield of radiochemically pure trehalose from glucose was routinely more than 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号