首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
We have determined the solution structures of recombinant domain 1 and native domain 6 of the multi-domain Kazal-type serine proteinase inhibitor LEKTI using multi-dimensional NMR spectroscopy. While two of the 15 potential inhibitory LEKTI domains contain three disulfide bonds typical of Kazal-type inhibitors, the remaining 13 domains have only two of these disulfide bridges. Therefore, they may represent a novel type of serine proteinase inhibitor. The first and the sixth LEKTI domain, which have been isolated from human blood ultrafiltrate, belong to this group. In spite of sharing the same disulfide pattern and a sequence identity of about 35% from the first to the fourth cysteine, the two proteins show different structures in this region. The three-dimensional structure of domain 6 consists of two helices and a beta-hairpin structure, and closely resembles the three-dimensional fold of classical Kazal-type serine proteinase inhibitors including the inhibitory binding loop. Domain 6 has been shown to be an efficient, but non-permanent serine proteinase inhibitor. The backbone geometry of its canonical loop is not as well defined as the remaining structural elements, providing a possible explanation for its non-permanent inhibitory activity. We conclude that domain 6 belongs to a subfamily of classical Kazal-type inhibitors, as the third disulfide bond and a third beta-strand are missing. The three-dimensional structure of domain 1 shows three helices and a beta-hairpin, but the central part of the structure differs remarkably from that of domain 6. The sequence adopting hairpin structure in domain 6 exhibits helical conformation in domain 1, and none of the residues within the putative P3 to P3' stretch features backbone angles that resemble those of the canonical loop of known proteinase inhibitors. No proteinase has been found to be inhibited by domain 1. We conclude that domain 1 adopts a new protein fold and is no canonical serine proteinase inhibitor.  相似文献   

2.
Lympho-epithelial Kazal-type-related inhibitor (LEKTI) is a 15-domain serine proteinase inhibitor which is of pathophysiological relevance for skin diseases and atopy. Domains 2 and 15 of LEKTI contain six cysteine residues and match the Kazal-type inhibitor motif almost exactly. The other 13 domains seem to be Kazal-type derived but lack the cysteines in positions 3 and 6 usually conserved within this family of inhibitors. Here, we report the recombinant production and comprehensive biochemical characterization of the 7.7 kDa LEKTI domain 6 (LD-6). Testing a selected number of different serine proteinases, we show that both native and recombinant LD-6 exhibit a significant but temporary inhibitory activity on trypsin. Furthermore, the relation of LEKTI domain 6 to Kazal-type inhibitors is confirmed by determining its disulfide bond pattern (1-4/2-3) and its P(1) site located after the second Cys residue of LD-6. The established strategy for the recombinant production of LEKTI domain 6 will enable further investigation of its mode of action and its physiological role.  相似文献   

3.
LEKTI is a 120-kDa protein that plays an important role in skin development, as mutations affecting LEKTI synthesis underlie Netherton syndrome, an inherited skin disorder producing severe scaling. Its primary sequence indicates that the protein consists of 15 domains, all resembling a Kazal-type serine protease inhibitor. LEKTI and two serine proteases belonging to the human tissue kallikrein (hK) family (hK5 and hK7) are expressed in the granular layer of skin. In this study, we characterize the interaction of two recombinant LEKTI fragments containing three or four intact Kazal domains (domains 6-8 and 9-12) with recombinant rhK5, a trypsin-like protease, and recombinant rhK7, a chymotrypsin-like protease. Both fragments inhibited rhK5 similarly in binding and kinetic studies performed at pH 8.0, as well as pH 5.0, the pH of the stratum corneum where both LEKTI and proteases may function. Inhibition equilibrium constants (Ki) measured either directly in concentration-dependent studies or calculated from measured association (kass) and dissociation (kdis) rate constants were 1.2-5.5 nM at pH 8.0 and 10-20 nM at pH 5.0. At pH 8.0, kass and kdis values were 4.7 x 10(5) M(-1) s(-1) and 5.5 x 10(-4) s(-1), and at pH 5.0 they were 4.0 x 10(4) M(-1) s(-1) and 4.3 x 10(-4) s(-1), respectively. The low Ki and kdis values (t1/2 of 20-25 min) indicate tight and specific association. Only fragment 6-9' was a good inhibitor of rhK7, demonstrating a Ki of 11 nM at pH 8.0 in a reaction that was rapidly reversible. These results show that LEKTI, at least in fragment form, is a potent inhibitor of rhK5 and that this protease may be a target of LEKTI in human skin.  相似文献   

4.
Kallikrein-related peptidases (KLKs) play a central role in skin desquamation. They are tightly controlled by specific inhibitors, including the lymphoepithelial Kazal-type inhibitor (LEKTI) encoded by SPINK5 and LEKTI-2 encoded by SPINK9. Herein, we identify SPINK6 as a selective inhibitor of KLKs in the skin. Unlike LEKTI but similar to LEKTI-2, SPINK6 possesses only one typical Kazal domain. Its mRNA was detected to be expressed at low levels in several tissues and was induced during keratinocyte differentiation. Natural SPINK6 was purified from human plantar stratum corneum extracts. Immunohistochemical analyses revealed SPINK6 expression in the stratum granulosum of human skin at various anatomical localizations and in the skin appendages, including sebaceous glands and sweat glands. SPINK6 expression was decreased in lesions of atopic dermatitis. Using KLK5, KLK7, KLK8, KLK14, thrombin, trypsin, plasmin, matriptase, prostasin, mast cell chymase, cathepsin G, neutrophil elastase, and chymotrypsin, inhibition with recombinant SPINK6 was detected only for KLK5, KLK7, and KLK14, with apparent Ki values of 1.33, 1070, and 0.5 nm, respectively. SPINK6 inhibited desquamation of human plantar callus in an ex vivo model. Our findings suggest that SPINK6 plays a role in modulating the activity of KLKs in human skin. A selective inhibition of KLKs by SPINK6 might have therapeutic potential when KLK activity is elevated.  相似文献   

5.
Plasma kallikrein is a serine protease that has many important functions, including modulation of blood pressure, complement activation, and mediation and maintenance of inflammatory responses. Although plasma kallikrein has been purified for 40 years, its structure has not been elucidated. In this report, we described two systems (Pichia pastoris and baculovirus/Sf9 cells) for expression of the protease domain of plasma kallikrein, along with the purification and high resolution crystal structures of the two recombinant forms. In the Pichia pastoris system, the protease domain was expressed as a heterogeneously glycosylated zymogen that was activated by limited trypsin digestion and treated with endoglycosidase H deglycosidase to reduce heterogeneity from the glycosylation. The resulting protein was chromatographically resolved into four components, one of which was crystallized. In the baculovirus/Sf9 system, homogeneous, crystallizable, and nonglycosylated protein was expressed after mutagenizing three asparagines (the glycosylation sites) to glutamates. When assayed against the peptide substrates, pefachrome-PK and oxidized insulin B chain, both forms of the protease domain were found to have catalytic activity similar to that of the full-length protein. Crystallization and x-ray crystal structure determination of both forms have yielded the first three-dimensional views of the catalytic domain of plasma kallikrein. The structures, determined at 1.85 A for the endoglycosidase H-deglycosylated protease domain produced from P. pastoris and at 1.40 A for the mutagenically deglycosylated form produced from Sf9 cells, show that the protease domain adopts a typical chymotrypsin-like serine protease conformation. The structural information provides insights into the biochemical and enzymatic properties of plasma kallikrein and paves the way for structure-based design of protease inhibitors that are selective either for or against plasma kallikrein.  相似文献   

6.
The three-dimensional structure of a novel Kunitz (STI) family member, an inhibitor purified from Delonix regia seeds (DrTI), was solved by molecular replacement method and refined, respectively, to R(factor) and R(free) values of 21.5% and 25.3% at 1.75A resolution. The structure has a classical beta-trefoil fold, however, differently from canonical Kunitz type (STI) inhibitors, its reactive site loop has an insertion of one residue, Glu68, between the residues P1 and P2. Surprisingly, DrTI is an effective inhibitor of trypsin and human plasma kallikrein, but not of chymotrypsin and tissue kallikrein. Putative structural grounds of such specificity are discussed.  相似文献   

7.
A series of 1,3,6-trisubstituted 1,4-diazepan-7-ones were prepared as kallikrein 7 (KLK7, stratum corneum chymotryptic enzyme) inhibitors. Previously reported compounds 13 were potent human KLK7 inhibitors; however, they did not exhibit inhibitory activity against mouse KLK7. Comparison of the human and mouse KLK7 structures reveals the cause of this species differences; therefore, compounds that could inhibit both KLK7s were designed, synthesized, and evaluated. Through this structure-based drug design, compound 22g was identified as an inhibitor against human and mouse KLK7, and only one of the enantiomers, (–)–22g, exhibited potent inhibitory activity. Furthermore, the crystal structure of mouse KLK7 complexed with 22g enabled the elucidation of structure–activity relationships and justified 22g as a valuable compound to overcome the species differences.  相似文献   

8.
The secretory lympho-epithelial Kazal-type-inhibitor (LEKTI) is synthesized as a pro-LEKTI protein containing an N-terminal signal peptide and 15 potentially inhibitory domains. This inhibitor is of special interest because of its pathophysiological importance for the severe congenital disease Netherton syndrome. We showed that LEKTI is a potent inhibitor of a family of serine proteinases involved in extracellular matrix remodeling and its expression is downregulated in head and neck squamous cell carcinomas. To assess the role of C-terminal domains and N-terminal signal peptide in LEKTI secretion, we constructed deletion mutants of LEKTI, expressed them in HEK 293T cells, and analyzed their secretion behavior, stability, subcellular distribution, and proteinase inhibitory function. Pro-LEKTI is processed and secreted into the medium. On the basis of partial N-terminal sequencing and immunoblotting, the cleavage products are ordered from amino- to carboxy-terminal as follows: 37, 40, and 60kDa. Inhibitors of furin lead to enhanced secretion of unprocessed LEKTI, suggesting that processing was not required for secretion. Deletion of the N-terminal signal peptide of pro-LEKTI caused altered distribution of LEKTI from endoplasmic reticulum (ER) to cytoplasm and markedly reduced its stability, consistent with its failure to become secreted into the medium. Interestingly, when we deleted the C-terminal domains, stable partial LEKTI (LD-1-6) accumulated and still retained its association with ER but was not secreted. Recombinant LD-1-6 specifically inhibited the trypsin activity. We conclude that N-terminal signal peptide is required for LEKTI import into ER and elements present in C-terminal domains may have a role in regulating LEKTI secretion.  相似文献   

9.
Human tissue kallikrein, a trypsin-like serine protease involved in blood pressure regulation and inflammation processes, was expressed in a deglycosylated form at high levels in Pichia pastoris, purified, and crystallized. The crystal structure at 2.0 A resolution is described and compared with that of porcine kallikrein and of other trypsin-like proteases. The active and S1 sites (nomenclature of Schechter I, Berger A, 1967, Biochem Biophys Res Commun 27:157-162) are similar to those of porcine kallikrein. Compared to trypsin, the S1 site is enlarged owing to the insertion of an additional residue, cis-Pro 219. The replacement Tyr 228 --> Ala further enlarges the S1 pocket. However, the replacement of Gly 226 in trypsin with Ser in human tissue kallikrein restricts accessibility of substrates and inhibitors to Asp 189 at the base of the S1 pocket; there is a hydrogen bond between O delta1Asp189 and O gammaSer226. These changes in the architecture of the S1 site perturb the binding of inhibitors or substrates from the modes determined or inferred for trypsin. The crystal structure gives insight into the structural differences responsible for changes in specificity in human tissue kallikrein compared with other trypsin-like proteases, and into the structural basis for the unusual specificity of human tissue kallikrein in cleaving both an Arg-Ser and a Met-Lys peptide bond in its natural protein substrate, kininogen. A Zn+2-dependent, small-molecule competitive inhibitor of kallikrein (Ki = 3.3 microM) has been identified and the bound structure modeled to guide drug design.  相似文献   

10.
Recently we have described a novel secreted protein (the WFIKKN protein) that consists of multiple types of protease inhibitory modules, including two tandem Kunitz-type protease inhibitor-domains. On the basis of its homologies we have suggested that the WFIKKN protein is a multivalent protease inhibitor that may control the action of different proteases. In the present work we have expressed the second Kunitz-type protease inhibitor domain of the human protein WFIKKN in Escherichia coli, purified it by affinity chromatography on trypsin-Sepharose and its structure was characterized by CD spectroscopy. The recombinant protein was found to inhibit trypsin (Ki = 9.6 nm), but chymotrypsin, elastase, plasmin, pancreatic kallikrein, lung tryptase, plasma kallikrein, thrombin, urokinase or tissue plasminogen activator were not inhibited by the recombinant protein even at 1 microm concentration. In view of the marked trypsin-specificity of the inhibitor it is suggested that its physiological target may be trypsin.  相似文献   

11.
Lympho-Epithelial Kazal-Type-related Inhibitor (LEKTI) has been demonstrated to be an inhibitor of various kallikreins and is thought to play a role in the regulation of skin desquamation. In order to identify and investigate the potential of LEKTI to interact with other proteins, a method was developed using immobilised proteins onto arrays and nanoUPLC/MALDI-TOF MS. Using various domains of LEKTI, we demonstrated that these domains bound a number of kallikreins (5, 13 and 14) to varied extents on the array surface. Inhibitory assays confirmed that binding on the protein array surface corresponded directly to levels of inhibition. The method was then tested using skin epidermal extracts. All forms of rLEKTI with the exception of rLEKTI 12-15, demonstrated the binding of several potential candidate proteins. Surprisingly, the major binding partners of LEKTI were found to be the antimicrobial peptide dermcidin and the serine protease cathepsin G and no kallikreins. Using confocal microscopy and Netherton syndrome skin sections, we confirmed the co-localisation of LEKTI with dermcidin and demonstrated altered trafficking of dermcidin in these patients. This potential new role for LEKTI as a multifunctional protein in the protection and transport of proteins in the epidermis and its role in disease are discussed.  相似文献   

12.
13.
Caspases are central to apoptosis, and the principal executioner caspases, caspase-3 and -7, were reported to be similar in activity, primary structure, and three-dimensional structure. Here, we identified different activity in caspase-3 and -7 within cells and examined the relationship between their structure and function using human cells expressing almost equal amounts of exogenous caspase-3, caspase-7, and/or chimeric constructs after down-regulation of endogenous caspase-3 and -7 expression. Caspase-3 (produced in human cells) showed much stronger cleaving activity than caspase-7 against a low molecular weight substrate in vitro dependent on four specific amino acid regions. Within cells, however, an additional three regions were required for caspase-3 to exert much stronger protease activity than caspase-7 against cellular substrates. Three of the former four regions and the latter three regions were shown to form two different three-dimensional structures that were located at the interface of the homodimer of procaspase-7 on opposite sides. In addition, procaspase-3 and -7 revealed specific homodimer-forming activity within cells dependent on five amino acid regions, which were included in the regions critical to the cleaving activity within cells. Thus, human caspase-3 and -7 exhibit differences in protease activity, specific homodimer-forming activity, and three-dimensional structural features, all of which are closely interrelated.  相似文献   

14.
A novel series of 1,3,6-trisubstituted 1,4-diazepan-7-ones were investigated as human kallikrein 7 (KLK7, stratum corneum chymotryptic enzyme) inhibitors. Based on the X-ray co-crystal structure of compound 1 bound to human KLK7, the derivatives of this scaffold were designed, synthesized, and evaluated. Through structure-activity relationship studies focused on the side chain located in the prime site region of the enzyme, representative compounds 15, 33a, and 35a were identified as highly potent and selective inhibitors of human KLK7.  相似文献   

15.
Kallikreins-related peptidases (KLKs) are serine proteases and have been implicated in the desquamation process of the skin. Their activity is tightly controlled by epidermal protease inhibitors like the lympho-epithelial Kazal-type inhibitor (LEKTI). Defects of the LEKTI-encoding gene serine protease inhibitor Kazal type (Spink)5 lead to the absence of LEKTI and result in the genodermatose Netherton syndrome, which mimics the common skin disease atopic dermatitis. Since many KLKs are expressed in human skin with KLK5 being considered as one of the most important KLKs in skin desquamation, we proposed that more inhibitors are present in human skin. Herein, we purified from human stratum corneum by HPLC techniques a new KLK5-inhibiting peptide encoded by a member of the Spink family, designated as Spink9 located on chromosome 5p33.1. This peptide is highly homologous to LEKTI and was termed LEKTI-2. Recombinant LEKTI-2 inhibited KLK5 but not KLK7, 14 or other serine proteases tested including trypsin, plasmin and thrombin. Spink9 mRNA expression was detected in human skin samples and in cultured keratinocytes. LEKTI-2 immune-expression was focally localized at the stratum granulosum and stratum corneum at palmar and plantar sites in close localization to KLK5. At sites of plantar hyperkeratosis, LEKTI-2 expression was increased. We suggest that LEKTI-2 contributes to the regulation of the desquamation process in human skin by specifically inhibiting KLK5.  相似文献   

16.
The multidomain proteinase inhibitor LEKTI (lympho-epithelial Kazal-type related inhibitor) consists of 15 potential serine proteinase inhibitory domains. In various diseases such as the severe skin disorder Netherton syndrome as well as atopy, defects in the gene encoding LEKTI have been identified that generate premature termination codons of translation, suggesting a specific role of the COOH-terminal part of LEKTI in healthy individuals. We overexpressed and purified a sequence comprising the 15th domain of LEKTI for further characterisation. Here, we present a high yield expression system for recombinant production and efficient purification of LEKTI domain 15 as a highly soluble protein with a uniform disulfide pattern that is identical to that of other known Kazal-type inhibitors. Also, the expected P1P1' site was confirmed. LEKTI domain 15 is a well-structured protein as verified by circular dichroism (CD) spectroscopy and a tight-binding and stable inhibitor of the serine proteinase trypsin. These findings confirm the designation of domain 15 as a proteinase inhibitor of the Kazal family.  相似文献   

17.
The extracellular protease ADAMTS-7 has been identified as a potential therapeutic target in atherosclerosis and associated diseases such as coronary artery disease (CAD). However, ADAMTS-7 inhibitors have not been reported so far. Screening of inhibitors has been hindered by the lack of a suitable peptide substrate and, consequently, a convenient activity assay. Here we describe the first fluorescence resonance energy transfer (FRET) substrate for ADAMTS-7, ATS7FP7. ATS7FP7 was used to measure inhibition constants for the endogenous ADAMTS-7 inhibitor, TIMP-4, as well as two hydroxamate-based zinc chelating inhibitors. These inhibition constants match well with IC50 values obtained with our SDS-PAGE assay that uses the N-terminal fragment of latent TGF-β–binding protein 4 (LTBP4S-A) as a substrate. Our novel fluorogenic substrate ATS7FP7 is suitable for high throughput screening of ADAMTS-7 inhibitors, thus accelerating translational studies aiming at inhibition of ADAMTS-7 as a novel treatment for cardiovascular diseases such as atherosclerosis and CAD.  相似文献   

18.
Desquamation of the stratum corneum is a serine protease-dependent process. Two members of the human tissue kallikrein (KLK) family of (chymo)tryptic-like serine proteases, KLK5 and KLK7, are implicated in desquamation by digestion of (corneo)desmosomes and inhibition by desquamation-related serine protease inhibitors (SPIs). However, the epidermal localization and specificity of additional KLKs also supports a role for these enzymes in desquamation. This study aims to delineate the probable contribution of KLK1, KLK5, KLK6, KLK13, and KLK14 to desquamation by examining their interactions, in vitro, with: 1) colocalized SPI, lympho-epithelial Kazal-type-related inhibitor (LEKTI, four recombinant fragments containing inhibitory domains 1-6 (rLEKTI(1-6)), domains 6-8 and partial domain 9 (rLEKTI(6-9')), domains 9-12 (rLEKTI(9-12)), and domains 12-15 (rLEKTI(12-15)), secretory leukocyte protease inhibitor, and elafin and 2) their ability to digest the (corneo)desmosomal cadherin, desmoglein 1. KLK1 was not inhibited by any SPI tested. KLK5, KLK6, KLK13, and KLK14 were potently inhibited by rLEKTI(1-6), rLEKTI(6-9'), and rLEKTI(9-12) with Ki values in the range of 2.3-28.4 nm, 6.1-221 nm, and 2.7-416 nm for each respective fragment. Only KLK5 was inhibited by rLEKTI(12-15) (Ki = 21.8 nm). No KLK was inhibited by secretory leukocyte protease inhibitor or elafin. Apart from KLK13, all KLKs digested the ectodomain of desmoglein 1 within cadherin repeats, Ca2+ binding sites, or in the juxtamembrane region. Our study indicates that multiple KLKs may participate in desquamation through cleavage of desmoglein 1 and regulation by LEKTI. These findings may have clinical implications for the treatment of skin disorders in which KLK activity is elevated.  相似文献   

19.
Human kallikrein 6 (hK6) is a trypsin-like serine protease, member of the human kallikrein gene family. Studies suggested a potential involvement of hK6 in the development and progression of Alzheimer's disease. The serum levels of hK6 might be used as a biomarker for ovarian cancer. To gain insights into the physiological role of this enzyme, we sought to determine its substrate specificity and its interactions with various inhibitors. We produced the proform of hK6 and showed that this enzyme was able to autoactivate, as well as proteolyse itself, leading to inactivation. Kinetic studies indicated that hK6 cleaved with much higher efficiency after Arg than Lys and with a preference for Ser or Pro in the P2 position. The efficient degradation of fibrinogen and collagen types I and IV by hK6 indicated that this kallikrein might play a role in tissue remodeling and/or tumor invasion and metastasis. We also demonstrated proteolysis of amyloid precursor protein by hK6 and determined the cleavage sites at the N-terminal end of the protein. Inhibition of hK6 was achieved via binding to different serpins, among which antithrombin III was the most efficient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号