首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a novel, motion planning based approach to approximately map the energy landscape of an RNA molecule. A key feature of our method is that it provides a sparse map that captures the main features of the energy landscape which can be analyzed to compute folding kinetics. Our method is based on probabilistic roadmap motion planners that we have previously successfully applied to protein folding. In this paper, we provide evidence that this approach is also well suited to RNA. We compute population kinetics and transition rates on our roadmaps using the master equation for a few moderately sized RNA and show that our results compare favorably with results of other existing methods.  相似文献   

2.
The folding of naturally occurring, single-domain proteins is usually well described as a simple, single-exponential process lacking significant trapped states. Here we further explore the hypothesis that the smooth energy landscape this implies, and the rapid kinetics it engenders, arises due to the extraordinary thermodynamic cooperativity of protein folding. Studying Miyazawa-Jernigan lattice polymers, we find that, even under conditions where the folding energy landscape is relatively optimized (designed sequences folding at their temperature of maximum folding rate), the folding of protein-like heteropolymers is accelerated when their thermodynamic cooperativity is enhanced by enhancing the nonadditivity of their energy potentials. At lower temperatures, where kinetic traps presumably play a more significant role in defining folding rates, we observe still greater cooperativity-induced acceleration. Consistent with these observations, we find that the folding kinetics of our computational models more closely approximates single-exponential behavior as their cooperativity approaches optimal levels. These observations suggest that the rapid folding of naturally occurring proteins is, in part, a consequence of their remarkably cooperative folding.  相似文献   

3.
Predicting Secondary Structural Folding Kinetics for Nucleic Acids   总被引:1,自引:0,他引:1  
We report a new computational approach to the prediction of RNA secondary structure folding kinetics. In this approach, each elementary kinetic step is represented as the transformation between two secondary structures that differ by a helix. Based on the free energy landscape analysis, we identify three types of dominant pathways and the rate constants for the kinetic steps: 1), formation; 2), disruption of a helix stem; and 3), helix formation with concomitant partial melting of a competing (incompatible) helix. The third pathway, termed the tunneling pathway, is the low-barrier dominant pathway for the conversion between two incompatible helices. Comparisons with experimental data indicate that this new method is quite reliable in predicting the kinetics for RNA secondary structural folding and structural rearrangements. The approach presented here may provide a robust first step for further systematic development of a predictive theory for the folding kinetics for large RNAs.  相似文献   

4.
2-Aminopurine (2AP) is a fluorescent adenine analog that probes mainly base stacking in nucleic acids. We labeled the loop or the stem of the RNA hairpin gacUACGguc with 2AP to study folding thermodynamics and kinetics at both loci. Thermal melts and fast laser temperature jumps detected by 2AP fluorescence monitored the stability and folding/unfolding kinetics. The observed thermodynamic and kinetic traces of the stem and loop mutants, though strikingly different at a first glance, can be fitted to the same free-energy landscape. The differences between the two probe locations arise because base stacking decreases upon unfolding in the stem, whereas it increases in the loop. We conclude that 2AP is a conservative adenine substitution for mapping out the contributions of different RNA structural elements to the overall folding process. Molecular dynamics (MD) totaling 0.6 μsec were performed to look at the conformations populated by the RNA at different temperatures. The combined experimental data, and MD simulations lead us to propose a minimal four-state free-energy landscape for the RNA hairpin. Analysis of this landscape shows that a sequential folding model is a good approximation for the full folding dynamics. The frayed state formed initially from the native state is a heterogeneous ensemble of structures whose stem is frayed either from the end or from the loop.  相似文献   

5.
We present the first single-molecule atomic force microscopy study on the effect of chemical denaturants on the mechanical folding/unfolding kinetics of a small protein GB1 (the B1 immunoglobulin-binding domain of protein G from Streptococcus). Upon increasing the concentration of the chemical denaturant guanidinium chloride (GdmCl), we observed a systematic decrease in the mechanical stability of GB1, indicating the softening effect of the chemical denaturant on the mechanical stability of proteins. This mechanical softening effect originates from the reduced free-energy barrier between the folded state and the unfolding transition state, which decreases linearly as a function of the denaturant concentration. Chemical denaturants, however, do not alter the mechanical unfolding pathway or shift the position of the transition state for mechanical unfolding. We also found that the folding rate constant of GB1 is slowed down by GdmCl in mechanical folding experiments. By combining the mechanical folding/unfolding kinetics of GB1 in GdmCl solution, we developed the “mechanical chevron plot” as a general tool to understand how chemical denaturants influence the mechanical folding/unfolding kinetics and free-energy diagram in a quantitative fashion. This study demonstrates great potential in combining chemical denaturation with single-molecule atomic force microscopy techniques to reveal invaluable information on the energy landscape underlying protein folding/unfolding reactions.  相似文献   

6.
We report a detailed all-atom simulation of the folding of the GCAA RNA tetraloop. The GCAA tetraloop motif is a very common and thermodynamically stable secondary structure in natural RNAs. We use our simulation methods to study the folding behavior of a 12-base GCAA tetraloop structure with a four-base helix adjacent to the tetraloop proper. We implement an all-atom Monte Carlo (MC) simulation of RNA structural dynamics using a Go potential. Molecular dynamics (MD) simulation of RNA and protein has realistic energetics and sterics, but is extremely expensive in terms of computational time. By coarsely treating non-covalent energetics, but retaining all-atom sterics and entropic effects, all-atom MC techniques are a useful method for the study of protein and now RNA. We observe a sharp folding transition for this structure, and in simulations at room temperature the state histogram shows three distinct minima: an unfolded state (U), a more narrow intermediated state (I), and a narrow folded state (F). The intermediate consists primarily of structures with the GCAA loop and some helix hydrogen bonds formed. Repeated kinetic folding simulations reveal that the number of helix base-pairs forms a simple 1D reaction coordinate for the I-->N transition.  相似文献   

7.
RNA duplex stability depends strongly on ionic conditions, and inside cells RNAs are exposed to both monovalent and multivalent ions. Despite recent advances, we do not have general methods to quantitatively account for the effects of monovalent and multivalent ions on RNA stability, and the thermodynamic parameters for secondary structure prediction have only been derived at 1M [Na(+)]. Here, by mechanically unfolding and folding a 20 bp RNA hairpin using optical tweezers, we study the RNA thermodynamics and kinetics at different monovalent and mixed monovalent/Mg(2+) salt conditions. We measure the unfolding and folding rupture forces and apply Kramers theory to extract accurate information about the hairpin free energy landscape under tension at a wide range of ionic conditions. We obtain non-specific corrections for the free energy of formation of the RNA hairpin and measure how the distance of the transition state to the folded state changes with force and ionic strength. We experimentally validate the Tightly Bound Ion model and obtain values for the persistence length of ssRNA. Finally, we test the approximate rule by which the non-specific binding affinity of divalent cations at a given concentration is equivalent to that of monovalent cations taken at 100-fold concentration for small molecular constructs.  相似文献   

8.
MOTIVATION: Protein motions play an essential role in many biochemical processes. Lab studies often quantify these motions in terms of their kinetics such as the speed at which a protein folds or the population of certain interesting states like the native state. Kinetic metrics give quantifiable measurements of the folding process that can be compared across a group of proteins such as a wild-type protein and its mutants. RESULTS: We present two new techniques, map-based master equation solution and map-based Monte Carlo simulation, to study protein kinetics through folding rates and population kinetics from approximate folding landscapes, models called maps. From these two new techniques, interesting metrics that describe the folding process, such as reaction coordinates, can also be studied. In this article we focus on two metrics, formation of helices and structure formation around tryptophan residues. These two metrics are often studied in the lab through circular dichroism (CD) spectra analysis and tryptophan fluorescence experiments, respectively. The approximated landscape models we use here are the maps of protein conformations and their associated transitions that we have presented and validated previously. In contrast to other methods such as the traditional master equation and Monte Carlo simulation, our techniques are both fast and can easily be computed for full-length detailed protein models. We validate our map-based kinetics techniques by comparing folding rates to known experimental results. We also look in depth at the population kinetics, helix formation and structure near tryptophan residues for a variety of proteins. AVAILABILITY: We invite the community to help us enrich our publicly available database of motions and kinetics analysis by submitting to our server: http://parasol.tamu.edu/foldingserver/.  相似文献   

9.
The free energy landscape for the folding of large, multidomain RNAs is rugged, and kinetically trapped, misfolded intermediates are a hallmark of RNA folding reactions. Here, we examine the role of a native loop-receptor interaction in determining the ruggedness of the energy landscape for folding of the Tetrahymena ribozyme. We demonstrate a progressive smoothing of the energy landscape for ribozyme folding as the strength of the loop-receptor interaction is reduced. Remarkably, with the most severe mutation, global folding is more rapid than for the wild-type ribozyme and proceeds in a concerted fashion without the accumulation of long-lived kinetic intermediates. The results demonstrate that a complex interplay between native tertiary interactions, divalent ion concentration, and non-native secondary structure determines the ruggedness of the energy landscape. Furthermore, the results suggest that kinetic folding transitions involving large regions of highly structured RNAs can proceed in a concerted fashion, in the absence of significant stable, preorganized tertiary structure.  相似文献   

10.
11.
An important idea that emerges from the energy landscape theory of protein folding is that subtle global features of the protein landscape can profoundly affect the apparent mechanism of folding. The relationship between various characteristic temperatures in the phase diagrams and landmarks in the folding funnel at fixed temperatures can be used to classify different folding behaviors. The one-dimensional picture of a folding funnel classifies folding kinetics into four basic scenarios, depending on the relative location of the thermodynamic barrier and the glass transition as a function of a single-order parameter. However, the folding mechanism may not always be quantitatively described by a single-order parameter. Several other order parameters, such as degree of secondary structure formation, collapse and topological order, are needed to establish the connection between minimalist models and proteins in the laboratory. In this article we describe a simple multidimensional funnel based on two-order parameters that measure the degree of collapse and topological order. The appearance of several different “mechanisms” is illustrated by analyzing lattice models with different potentials and sequences with different degrees of design. In most cases, the two-dimensional analysis leads to a classification of mechanisms totally in keeping with the one-dimensional scheme, but a topologically distinct scenario of fast folding with traps also emerges. The nature of traps depends on the relative location of the glass transition surface and the thermodynamic barrier in the multidimensional funnel. Proteins 32:136–158, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
The process of large RNA folding is believed to proceed from many collapsed structures to a unique functional structure requiring precise organization of nucleotides. The diversity of possible structures and stabilities of large RNAs could result in non-exponential folding kinetics (e.g. stretched exponential) under conditions where the molecules have not achieved their native state. We describe a single-molecule fluorescence resonance energy transfer (FRET) study of the collapsed-state region of the free energy landscape of the catalytic domain of RNase P RNA from Bacillus stearothermophilus (Cthermo). Ensemble measurements have shown that this 260 residue RNA folds cooperatively to its native state at ≥1 mM Mg2+, but little is known about the conformational dynamics at lower ionic strength. Our measurements of equilibrium conformational fluctuations reveal simple exponential kinetics that reflect a small number of discrete states instead of the expected inhomogeneous dynamics. The distribution of discrete dwell times, collected from an “ensemble” of 300 single molecules at each of a series of Mg2+ concentrations, fit well to a double exponential, which indicates that the RNA conformational changes can be described as a four-state system. This finding is somewhat unexpected under [Mg2+] conditions in which this RNA does not achieve its native state. Observation of discrete well-defined conformations in this large RNA that are stable on the seconds timescale at low [Mg2+] (<0.1 mM) suggests that even at low ionic strength, with a tremendous number of possible (weak) interactions, a few critical interactions may produce deep energy wells that allow for rapid averaging of motions within each well, and yield kinetics that are relatively simple.  相似文献   

13.
Many RNAs need Mg2+to produce stable tertiary structures. Here we describe a simple method to measure the rate and activation parameters of tertiary structure unfolding that exploits this Mg2+dependence. Our approach is based on mixing an RNA solution with excess EDTA in a stopped-flow instrument equipped with an absorbance detector, under conditions of temperature and ionic strength where, after chelation of Mg2+, tertiary structure unfolds. We have demonstrated the utility of this method by studying phenylalanine-specific transfer RNA from yeast (tRNAPhe) because the unfolding rates and the corresponding activation parameters have been determined previously and provide a benchmark for our technique. We find that within error, our stopped-flow method reproduces both the rate and activation enthalpy for tertiary unfolding of yeast tRNAPhe measured previously by temperature-jump relaxation kinetics. Since many different RNAs require divalent magnesium for tertiary structure stabilization, this technique should be applicable to study the folding of other RNAs.  相似文献   

14.
Here we show that qualitatively, the building blocks folding model accounts for three-state versus the two-state protein folding. Additionally, it is consistent with the faster versus slower folding rates of the two-state proteins. Specifically, we illustrate that the building blocks size, their mode of associations in the native structure, the number of ways they can combinatorially assemble, their population times and the way they are split in the iterative, step-by-step structural dissection which yields the anatomy trees, explain a broad range of folding rates. We further show that proteins with similar general topologies may have different folding pathways, and hence different folding rates. On the other hand, the effect of mutations resembles that of changes in conditions, shifting the population times and hence the energy landscapes. Hence, together with the secondary structure type and the extent of local versus non-local interactions, a coherent, consistent rationale for folding kinetics can be outlined, in agreement with experimental results. Given the native structure of a protein, these guidelines enable a qualitative prediction of the folding kinetics. We further describe these in the context of the protein folding energy landscape. Quantitatively, in principle, the diffusion-collision model for the building block association can be used. However, the folding rates of the building blocks and traps in their formation and association, need to be considered.  相似文献   

15.
RNA folding landscapes have been described alternately as simple and as complex. The limited diversity of RNA residues and the ability of RNA to form stable secondary structures prior to adoption of a tertiary structure would appear to simplify folding relative to proteins. Nevertheless, there is considerable evidence for long-lived misfolded RNA states, and these observations have suggested rugged energy landscapes. Recently, single molecule fluorescence resonance energy transfer (smFRET) studies have exposed heterogeneity in many RNAs, consistent with deeply furrowed rugged landscapes. We turned to an RNA of intermediate complexity, the P4-P6 domain from the Tetrahymena group I intron, to address basic questions in RNA folding. P4-P6 exhibited long-lived heterogeneity in smFRET experiments, but the inability to observe exchange in the behavior of individual molecules led us to probe whether there was a non-conformational origin to this heterogeneity. We determined that routine protocols in RNA preparation and purification, including UV shadowing and heat annealing, cause covalent modifications that alter folding behavior. By taking measures to avoid these treatments and by purifying away damaged P4-P6 molecules, we obtained a population of P4-P6 that gave near-uniform behavior in single molecule studies. Thus, the folding landscape of P4-P6 lacks multiple deep furrows that would trap different P4-P6 molecules in different conformations and contrasts with the molecular heterogeneity that has been seen in many smFRET studies of structured RNAs. The simplicity of P4-P6 allowed us to reliably determine the thermodynamic and kinetic effects of metal ions on folding and to now begin to build more detailed models for RNA folding behavior.  相似文献   

16.
Brunette TJ  Brock O 《Proteins》2008,73(4):958-972
The most significant impediment for protein structure prediction is the inadequacy of conformation space search. Conformation space is too large and the energy landscape too rugged for existing search methods to consistently find near-optimal minima. To alleviate this problem, we present model-based search, a novel conformation space search method. Model-based search uses highly accurate information obtained during search to build an approximate, partial model of the energy landscape. Model-based search aggregates information in the model as it progresses, and in turn uses this information to guide exploration toward regions most likely to contain a near-optimal minimum. We validate our method by predicting the structure of 32 proteins, ranging in length from 49 to 213 amino acids. Our results demonstrate that model-based search is more effective at finding low-energy conformations in high-dimensional conformation spaces than existing search methods. The reduction in energy translates into structure predictions of increased accuracy.  相似文献   

17.
18.
Liu F  Tong H  Ou-Yang ZC 《Biophysical journal》2006,90(6):1895-1902
We develop a continue time Monte Carlo algorithm to simulate single RNAs unfolded by a time-dependent external force on the secondary structure level. Two recent unfolding RNA experiments carried out by Bustamante group are mainly investigated. We find that, in contrast to popular two-state assumption about the RNAs free energy landscape along the molecular extension, the molecules used in the experiments do not present apparent energy barriers. The strong cooperative folding and unfolding transitions of the RNAs observed in the experiments and in our simulations arise from the interaction of the molecules and the light trap. In addition, we also investigate the properties of Jarzynski's remarkable equality, whose experimental test has received considerable attention.  相似文献   

19.
Understanding the factors influencing the folding rate of proteins is a challenging problem. In this work, we have analyzed the role of non-covalent interactions for the folding rate of two-state proteins by free-energy approach. We have computed the free-energy terms, hydrophobic, electrostatic, hydrogen-bonding and van der Waals free energies. The hydrophobic free energy has been divided into the contributions from different atoms, carbon, neutral nitrogen and oxygen, charged nitrogen and oxygen, and sulfur. All the free-energy terms have been related with the folding rates of 28 two-state proteins with single and multiple correlation coefficients. We found that the hydrophobic free energy due to carbon atoms and hydrogen-bonding free energy play important roles to determine the folding rate in combination with other free energies. The normalized energies with total number of residues showed better results than the total energy of the protein. The comparison of amino acid properties with free-energy terms indicates that the energetic terms explain better the folding rate than amino acid properties. Further, the combination of free energies with topological parameters yielded the correlation of 0.91. The present study demonstrates the importance of topology for determining the folding rate of two-state proteins.  相似文献   

20.
To determine the extent to which protein folding rates and free energy landscapes have been shaped by natural selection, we have examined the folding kinetics of five proteins generated using computational design methods and, hence, never exposed to natural selection. Four of these proteins are complete computer-generated redesigns of naturally occurring structures and the fifth protein, called Top7, has a computer-generated fold not yet observed in nature. We find that three of the four redesigned proteins fold much faster than their naturally occurring counterparts. While natural selection thus does not appear to operate on protein folding rates, the majority of the designed proteins unfold considerably faster than their naturally occurring counterparts, suggesting possible selection for a high free energy barrier to unfolding. In contrast to almost all naturally occurring proteins of less than 100 residues but consistent with simple computational models, the folding energy landscape for Top7 appears to be quite complex, suggesting the smooth energy landscapes and highly cooperative folding transitions observed for small naturally occurring proteins may also reflect the workings of natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号