首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-linked agammaglobulinemia (XLA), an inherited disease, is caused by mutations in the Bruton's tyrosine kinase (BTK). The absence of functional BTK leads to failure of B-cell differentiation; this incapacitates antibody production in XLA patients, who suffer from recurrent, sometimes lethal, bacterial infections. BTK plays an important role in B-cell development; it interacts with several proteins in the context of signal transduction. Point mutation in the BTK gene that leads to deletion of C-terminal 14 aa residues of BTK SH3 domain was found in a patient family. To understand the role of BTK, we studied binding of BTK SH3 domain (aa 216–273, 58 residues) and truncated SH3 domain (216–259, 44 residues) with proline-rich peptides; the first peptide constitutes the SH3 domain of BTK, while the latter peptide lacks 14 amino acid residues of the C terminal. Proline-rich peptides selected from TH domain of BTK and p120cbl were studied. It is known that BTK TH domain binds to SH3 domains of various proteins. We found that BTK SH3 domain binds to peptides of BTK TH domain. This suggests that BTK SH3 and TH domains may associate in inter- or intramolecular fashion, which raises the possibility that the kinase may be regulating its own activity by restricting the availability of both its ligand-binding modules. We also found that truncated SH3 domain binds to BTK TH domain peptide less avidly than does normal SH3 domain. Also, we show that the SH3 and truncated SH3 domains bind to peptide of p120cbl, but the latter domain binds weakly. It is likely that the truncated SH3 domain fails to present to the ligand the crucial residues in the correct context, hence the weaker binding. These results delineate the importance of C terminal in binding of SH3 domains and indicate also that improper folding and the altered binding behavior of mutant BTK SH3 domain likely leads to XLA. Proteins 29:545–552, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
We have determined the solution structure of epidermal growth factor receptor pathway substrate 8 (Eps8) L1 Src homology 3 (SH3) domain in complex with the PPVPNPDYEPIR peptide from the CD3ε cytoplasmic tail. Our structure reveals the distinct structural features that account for the unusual specificity of the Eps8 family SH3 domains for ligands containing a PxxDY motif instead of canonical PxxP ligands. The CD3ε peptide binds Eps8L1 SH3 in a class II orientation, but neither adopts a polyproline II helical conformation nor engages the first proline-binding pocket of the SH3 ligand binding interface. Ile531 of Eps8L1 SH3, instead of Tyr or Phe residues typically found in this position in SH3 domains, renders this hydrophobic pocket smaller and nonoptimal for binding to conventional PxxP peptides. A positively charged arginine at position 512 in the n-Src loop of Eps8L1 SH3 plays a key role in PxxDY motif recognition by forming a salt bridge to D7 of the CD3ε peptide. In addition, our structural model suggests a hydrogen bond between the hydroxyl group of the aromatic ring of Y8 and the carboxyl group of E496, thus explaining the critical role of the PxxDY motif tyrosine residue in binding to Eps8 family SH3. These finding have direct implications also for understanding the atypical binding specificity of the amino-terminal SH3 of the Nck family proteins.  相似文献   

3.
The first SH3 domain (SH3.1) of Nckalpha specifically recognizes the proline-rich region of CD3varepsilon, a subunit of the T cell receptor complex. We have solved the NMR structure of Nckalpha SH3.1 that shows the characteristic SH3 fold consisting of two antiparallel beta-sheets tightly packed against each other. According to chemical shift mapping analysis, a peptide encompassing residues 150-166 of CD3varepsilon binds at the canonical SH3 binding site. An exhaustive comparison with the structures of other SH3 domains able and unable to bind CD3varepsilon reveals that Nckalpha SH3.1 recognises a non-canonical PxxPxxDY motif that orientates at the binding site as a class II ligand. A positively charged residue (K/R) at position -2 relative to the WW sequence at the beginning of strand beta3 is crucial for PxxDY recognition. A 14-mer optimised Nckalpha SH3.1 ligand was found using a multi-substitution approach. Based on NMR data, this improved ligand binds Nckalpha SH3.1 through a PxxPxRDY motif that combines specific stabilising interactions corresponding to both canonical class II, PxxPx(K/R), and non-canonical PxxPxxDY motifs. This explains its higher capacity for Nckalpha SH3.1 binding relative to the wild type sequence.  相似文献   

4.
Hiipakka M  Saksela K 《FEBS letters》2007,581(9):1735-1741
Src-homology (SH3) domain belongs to a class of ubiquitous modular protein domains found in nature. SH3 domains have a conserved surface that recognises proline-rich peptides in ligand proteins, but additional contacts also contribute to binding. Using the SH3 domain of hematopoietic cell kinase as a test case, we show that SH3 binding properties can be profoundly altered by modifications within a hexapeptide sequence in the RT-loop region that is not involved in recognition of currently known consensus SH3 target peptides. These results highlight the role of non-conserved regions in SH3 target selection, and introduce a strategy that may be generally feasible for generating artificial SH3 domains with desired ligand binding properties.  相似文献   

5.
6.
Kami K  Takeya R  Sumimoto H  Kohda D 《The EMBO journal》2002,21(16):4268-4276
The basic function of the Src homology 3 (SH3) domain is considered to be binding to proline-rich sequences containing a PxxP motif. Recently, many SH3 domains, including those from Grb2 and Pex13p, were reported to bind sequences lacking a PxxP motif. We report here that the 22 residue peptide lacking a PxxP motif, derived from p47(phox), binds to the C-terminal SH3 domain from p67(phox). We applied the NMR cross-saturation method to locate the interaction sites for the non-PxxP peptides on their cognate SH3 domains from p67(phox), Grb2 and Pex13p. The binding site of the Grb2 SH3 partially overlapped the conventional PxxP-binding site, whereas those of p67(phox) and Pex13p SH3s are located in different surface regions. The non-PxxP peptide from p47(phox) binds to the p67(phox) SH3 more tightly when it extends to the N-terminus to include a typical PxxP motif, which enabled the structure determination of the complex, to reveal that the non-PxxP peptide segment interacted with the p67(phox) SH3 in a compact helix-turn-helix structure (PDB entry 1K4U).  相似文献   

7.
The delineation of molecular structures that dictate Src homology 3 (SH3) domain recognition of specific proline-rich ligands is key to understanding unique functions of diverse SH3 domain-containing signalling molecules. We recently established that assembly of the phagocyte NADPH oxidase involves multiple SH3 domain interactions between several oxidase components (p47phox, p67phox, and p22phox). p47phox was shown to play a central role in oxidase activation in whole cells by mediating interactions with both the transmembrane component p22phox and cytosolic p67phox. To understand the specific roles of each SH3 domain of p47phox in oxidase assembly and activation, we mutated critical consensus residues (Tyr167 or Tyr237-->Leu [Y167L or Y237L], W193R or W263R, and P206L or P276L) on each of their binding surfaces. The differential effects of these mutations indicated that the first SH3 domain is responsible for the p47phox-p22phox interaction and plays a predominant role in oxidase activity and p47phox membrane assembly, while the second p47phox SH3 domain interacts with the NH2-terminal domain of p67phox. Binding experiments using the isolated first SH3 domain also demonstrated its involvement in intramolecular interactions within p47phox and showed a requirement for five residues (residues 151 to 155) on its N-terminal boundary for binding to p22phox. The differential effects of nonconserved-site mutations (W204A or Y274A and E174Q or E244Q) on whole-cell oxidase activity suggested that unique contact residues within the third binding pocket of each SH3 domain influence their ligand-binding specificities.  相似文献   

8.
pp60(c-src) is a prototypical nonreceptor tyrosine kinase and may play a role in diseases as diverse as cancer and osteoporosis. In Src, the SH3 domain (Src homology 3) binds proteins at specific, proline-rich sequences, while the SH2 domain (Src homology 2) binds phosphotyrosine-containing sequences. Inhibition of Src SH3 and SH2 domain function is of potential therapeutic value because of their importance in signaling pathways involved in disease states. We have developed dual-wavelength fluorescent peptide probes for both the Src SH3 and the Src SH2 domains, which allow the simultaneous measurement of compounds binding to each domain in assays based on the technique of fluorescence polarization. We demonstrate the utility of these probes in a dual-binding assay (suitable for high-throughput screening) to study the interactions of various peptides with these domains, including a sequence from the rat protein p130(CAS) which has been reported to bind simultaneously to both Src SH3 and SH2 domains. Utilizing this dual-binding assay, we confirm that sequences from p130(CAS) can simultaneously bind Src via both its SH3 and its SH2 domains. We also use the dual-binding assay as an internal control to identify substances which inhibit SH3 and SH2 binding via nonspecific mechanisms.  相似文献   

9.
HS1 is a protein involved in erythroid proliferation and apoptotic cell death, containing several structurally significant motifs including a C-terminal SH3 domain. HPK1 is a member of the Ste20-related kinase family, which contains four proline-rich sequences and is constitutively associated with HS1 in hematopoietic cells. Recombinant fusion protein GST-SH3HS1 was expressed to assess the binding properties of 16 peptides derived from the HPK1 proline-rich regions. The binding affinities were determined by non-immobilized ligand interaction assay by circular dichroism. Our results revealed that the classical PxxPxK class II binding motif is not sufficient to induce the interaction with the GST-SH3HS1 domain, an event dependent on the presence of additional basic residue(s) located at the C-terminus of the PxxPxK motif: Lys−5 in P2 peptide and Lys−8 in P4c peptide. Lys replacement by Arg residues decreases the ligand binding affinity. The finding that both SH3HS1 domain and full-length HS1 protein bind to P2 peptide with similar affinity demonstrates that the whole protein sequence does not affect the interaction properties of the domain. In silico models of SH3HS1 as a complex with P2 or P4c highlight the domain residues that interact with the recognition determinants of the peptide ligand and that cooperate in the complex stabilization.  相似文献   

10.
We report here the NMR-derived structure of the binary complex formed by the interleukin-2 tyrosine kinase (Itk) Src homology 3 (SH3) and Src homology 2 (SH2) domains. The interaction is independent of both a phosphotyrosine motif and a proline-rich sequence, the classical targets of the SH2 and SH3 domains, respectively. The Itk SH3/SH2 structure reveals the molecular details of this nonclassical interaction and provides a clear picture for how the previously described prolyl cis/trans isomerization present in the Itk SH2 domain mediates SH3 binding. The higher-affinity cis SH2 conformer is preorganized to form a hydrophobic interface with the SH3 domain. The structure also provides insight into how autophosphorylation in the Itk SH3 domain might increase the affinity of the intermolecular SH3/SH2 interaction. Finally, we can compare this Itk complex with other examples of SH3 and SH2 domains engaging their ligands in a nonclassical manner. These small binding domains exhibit a surprising level of diversity in their binding repertoires.  相似文献   

11.
D Cussac  M Frech    P Chardin 《The EMBO journal》1994,13(17):4011-4021
Phosphotyrosine peptide binding to Grb2 induces tryptophan fluorescence changes in the Src homology 2 (SH2) domain. Affinities are in the nanomolar range, the Shc peptide having the highest affinity, followed by peptides mimicking Grb2 binding sites on EGF and HGF receptors, the putative sites on insulin and IGF-1 receptors having much lower affinities. Proline-rich peptide binding to the SH3 domains induces fluorescence changes mainly in the C-terminal SH3. Affinities are in the micromolar range, the highest affinity peptides mimicking the first proline-rich motif of the Sos C-terminus. Additional residues before this PVPPPVPP motif provide a minor contribution to the binding, but the two residues after this motif are important and may contribute to specificity. The affinity of each SH3 for each proline-rich motif is too low to account for the high stability of the Grb2-Sos complex, suggesting that Grb2 recognizes other structural features in the Sos C-terminus. Binding of a phosphotyrosine peptide to the SH2 has no effect on the SH3s. Thus the binding of Grb2 to a receptor or to an associated protein phosphorylated on tyrosines is unlikely to activate the exchange factor activity of Sos through a conformational change transmitted from the SH2 to the SH3 domains.  相似文献   

12.
The Shc (Src homology collagen-like) adaptor protein plays a crucial role in linking stimulated receptors to mitogen-activated protein kinase activation through the formation of dynamic signalling complexes. Shc comprises an N-terminal phosphotyrosine binding (PTB) domain, a C-terminal Src homology 2 (SH2) domain and a central proline-rich collagen homology 1 domain. The latter domain contains three tyrosine residues that are known to become phosphorylated. We have expressed and purified the human p52Shc isoform and characterised its binding to different ligands. CD spectra revealed that some parts of the Shc protein are not fully folded, remaining largely unaffected by the binding of ligands. The PTB domain binds peptide and Ins-1,4,5-P3 (but not Ins-1,3,5-P3) independently, suggesting two distinct sites of interaction. In the unphosphorylated Shc, the SH2 domain is non-functional. Ligand binding to the PTB domain does not affect this. However, phosphorylation of the three tyrosine residues promotes binding to the SH2 domain. Thus, Shc has an intrinsic phosphorylation-dependent gating mechanism where the SH2 domain adopts an open conformation only when tyrosine phosphorylation has occurred.  相似文献   

13.
SH3 domains mediate intracellular protein-protein interactions through the recognition of proline-rich sequence motifs on cellular proteins. Structural analysis of the Src SH3 domain (Src SH3) complexed with proline-rich peptide ligands revealed three binding sites involved in this interaction: two hydrophobic interactions (between aliphatic proline dipeptides in the SH3 ligand and highly conserved aromatic residues on the surface of the SH3 domain), and one salt bridge (between Asp-99 of Src and an Arg three residues upstream of the conserved Pro-X-X-Pro motif in the ligand). We examined the importance of the arginine binding site of SH3 domains by comparing the binding properties of wild-type Src SH3 and Abl SH3 with those of a Src SH3 mutant containing a mutated arginine binding site (D99N) and Abl SH3 mutant constructs engineered to contain an arginine binding site (T98D and T98D/F91Y). We found that the D99N mutation diminished binding to most Src SH3-binding proteins in whole cell extracts; however, there was only a moderate reduction in binding to a small subset of Src SH3-binding proteins (including the Src substrate p68). p68 was shown to contain two Arg-containing Asp-99-dependent binding sites and one Asp-99-independent binding site which lacks an Arg. Moreover, substitution of Asp for Thr-98 in Abl SH3 changed the binding specificity of this domain and conferred the ability to recognize Arg-containing ligands. These results indicate that Asp-99 is important for Src SH3 binding specificity and that Asp-99-dependent binding interactions play a dominant role in Src SH3 recognition of cellular binding proteins, and they suggest the existence of two Src SH3 binding mechanisms, one requiring Asp-99 and the other independent of this residue.  相似文献   

14.
The yeast Nbp2p SH3 and Bem1p SH3b domains bind certain target peptides with similar high affinities, yet display vastly different affinities for other targets. To investigate this unusual behavior, we have solved the structure of the Nbp2p SH3-Ste20 peptide complex and compared it with the previously determined structure of the Bem1p SH3b bound to the same peptide. Although the Ste20 peptide interacts with both domains in a structurally similar manner, extensive in vitro studies with domain and peptide mutants revealed large variations in interaction strength across the binding interface of the two complexes. Whereas the Nbp2p SH3 made stronger contacts with the peptide core RXXPXXP motif, the Bem1p SH3b domain made stronger contacts with residues flanking the core motif. Remarkably, this modulation of local binding energetics can explain the distinct and highly nuanced binding specificities of these two domains.  相似文献   

15.
The domain organization of Acanthamoeba myosin-I, an oligomodular motor protein, includes a potentially important protein interaction module that is mostly uncharacterized. The Src homology 3, SH3, domain of myosin-I binds Acan125, a protein containing at least two consensus ligand binding domains: C-terminal SH3 binding motifs (PXXP) and N-terminal leucine-rich repeats. We report the first affinities determined for an SH3 domain of any myosin, namely, K(d) = 7 microM for a 21-residue synthetic peptide based on the PXXP domain sequence and K(d) = 0.15 microM for the PXXP domain included in the C-terminus of Acan125. These values are consistent with affinities reported for peptides and proteins that associate with SH3. By deletional analysis we show that only the PXXP domain is required for Acan125 to interact with the SH3 domain of Acanthamoeba myosin-IC (AmyoC(SH3)). The synthetic peptide described above at a concentration near the K(d) for SH3 binding blocked the interaction between native AmyoC and Acan125, mapping the interaction to the PXXP domain of Acan125 and the SH3 domain of myosin-I. These results are consistent with prototypical SH3 binding and suggest that a PXXP module is both necessary and sufficient to interact with an SH3 module of myosin-I.  相似文献   

16.
The SH2 domain protein SAP/SH2D1A, encoded by the X-linked lymphoproliferative (XLP) syndrome gene, associates with the hematopoietic cell surface receptor SLAM in a phosphorylation-independent manner. By screening a repertoire of synthetic peptides, the specificity of SAP/SH2D1A has been mapped and a consensus sequence motif for binding identified, T/S-x-x-x-x-V/I, where x represents any amino acid. Remarkably, this motif contains neither a Tyr nor a pTyr residue, a hallmark of conventional SH2 domain-ligand interactions. The structures of the protein, determined by NMR, in complex with two distinct peptides provide direct evidence in support of a "three-pronged" binding mechanism for the SAP/SH2D1A SH2 domain in contrast to the "two-pronged" binding for conventional SH2 domains. Differences in the structures of the two complexes suggest considerable flexibility in the SH2 domain, as further confirmed and characterized by hydrogen exchange studies. The structures also explain binding defects observed in disease-causing SAP/SH2D1A mutants and suggest that phosphorylation-independent interactions mediated by SAP/SH2D1A likely play an important role in the pathogenesis of XLP.  相似文献   

17.
To understand the role of the Yes-associated protein (YAP), binding partners of its WW1 domain were isolated by a yeast two-hybrid screen. One of the interacting proteins was identified as p53-binding protein-2 (p53BP-2). YAP and p53BP-2 interacted in vitro and in vivo using their WW1 and SH3 domains, respectively. The YAP WW1 domain bound to the YPPPPY motif of p53BP-2, whereas the p53BP-2 SH3 domain interacted with the VPMRLR sequence of YAP, which is different from other known SH3 domain-binding motifs. By mutagenesis, we showed that this unusual SH3 domain interaction was due to the presence of three consecutive tryptophans located within the betaC strand of the SH3 domain. A point mutation within this triplet, W976R, restored the binding selectivity to the general consensus sequence for SH3 domains, the PXXP motif. A constitutively active form of c-Yes was observed to decrease the binding affinity between YAP and p53BP-2 using chloramphenicol acetyltransferase/enzyme-linked immunosorbent assay, whereas the overexpression of c-Yes did not modify this interaction. Since overexpression of an activated form of c-Yes resulted in tyrosine phosphorylation of p53BP-2, we propose that the p53BP-2 phosphorylation, possibly in the WW1 domain-binding motif, might negatively regulate the YAP.p53BP-2 complex.  相似文献   

18.
Many important protein-protein interactions are mediated by peptide recognition modular domains, such as the Src homology 3 (SH3), SH2, PDZ, and WW domains. Characterizing the interaction interface of domain-peptide complexes and predicting binding specificity for modular domains are critical for deciphering protein-protein interaction networks. Here, we propose the use of an energetic decomposition analysis to characterize domain-peptide interactions and the molecular interaction energy components (MIECs), including van der Waals, electrostatic, and desolvation energy between residue pairs on the binding interface. We show a proof-of-concept study on the amphiphysin-1 SH3 domain interacting with its peptide ligands. The structures of the human amphiphysin-1 SH3 domain complexed with 884 peptides were first modeled using virtual mutagenesis and optimized by molecular mechanics (MM) minimization. Next, the MIECs between domain and peptide residues were computed using the MM/generalized Born decomposition analysis. We conducted two types of statistical analyses on the MIECs to demonstrate their usefulness for predicting binding affinities of peptides and for classifying peptides into binder and non-binder categories. First, combining partial least squares analysis and genetic algorithm, we fitted linear regression models between the MIECs and the peptide binding affinities on the training data set. These models were then used to predict binding affinities for peptides in the test data set; the predicted values have a correlation coefficient of 0.81 and an unsigned mean error of 0.39 compared with the experimentally measured ones. The partial least squares-genetic algorithm analysis on the MIECs revealed the critical interactions for the binding specificity of the amphiphysin-1 SH3 domain. Next, a support vector machine (SVM) was employed to build classification models based on the MIECs of peptides in the training set. A rigorous training-validation procedure was used to assess the performances of different kernel functions in SVM and different combinations of the MIECs. The best SVM classifier gave satisfactory predictions for the test set, indicated by average prediction accuracy rates of 78% and 91% for the binding and non-binding peptides, respectively. We also showed that the performance of our approach on both binding affinity prediction and binder/non-binder classification was superior to the performances of the conventional MM/Poisson-Boltzmann solvent-accessible surface area and MM/generalized Born solvent-accessible surface area calculations. Our study demonstrates that the analysis of the MIECs between peptides and the SH3 domain can successfully characterize the binding interface, and it provides a framework to derive integrated prediction models for different domain-peptide systems.  相似文献   

19.
Interaction between Btk TH and SH3 domain   总被引:1,自引:0,他引:1  
Okoh MP  Vihinen M 《Biopolymers》2002,63(5):325-334
Several mechanisms are involved in the regulation of cellular signaling. Bruton tyrosine kinase (Btk) of the Tec family contains in the Tec homology (TH) domain a proline-rich region (PRR) capable of interacting with several SH3 domains. The Btk has the SH3 domain adjacent to the TH domain. CD and fluorescence spectroscopy were used to study the binding of two peptides corresponding to segments in the PRR to the Btk SH3 domain. The peptide for the N-terminal half of the PRR binds specifically, whereas the other peptide had hardly any affinity. The TH domain has about four times lower affinity to the SH3 domain than the peptide, 17.0 vs 3.9 microM. The interaction was further tested with an SH3 domain construct that contained the PRR. The two peptides cannot compete for the binding to the extended protein and the TH domain has two times lower affinity to the extended SH3 domain. The intra- or intermolecular interaction between the TH and SH3 domain might have regulatory function also in the other Tec family members.  相似文献   

20.
Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3) domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders) and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号