首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Singh RP  Brooks BR  Klauda JB 《Proteins》2009,75(2):468-477
Sterols have been shown experimentally to bind to the Osh4 protein (a homolog of the oxysterol binding proteins) of Saccharomyces cerevisiae within a binding tunnel, which consists of antiparallel beta-sheets that resemble a beta-barrel and three alpha-helices of the N-terminus. This and other Osh proteins are essential for intracellular transport of sterols and ultimately cell life. Molecular dynamics (MD) simulations are used to study the binding of cholesterol to Osh4 at the atomic level. The structure of the protein is stable during the course of all MD simulations and has little deviation from the experimental crystal structure. The conformational stability of cholesterol within the binding tunnel is aided in part by direct or water-mediated interactions between the 3-hydroxyl (3-OH) group of cholesterol and Trp(46), Gln(96), Tyr(97), Asn(165), and/or Gln(181) as well as dispersive interactions with Phe(42), Leu(24), Leu(39), Ile(167), and Ile(203). These residues along with other nonpolar residues in the binding tunnel and lid contribute nearly 75% to the total binding energy. The strongest and most populated interaction is between Gln(96) and 3-OH with a cholesterol/Gln(96) interaction energy of -4.5 +/- 1.0 kcal/mol. Phe(42) has a similar level of attraction to cholesterol with -4.1 +/- 0.3 kcal/mol. A MD simulation without the N-terminus lid that covers the binding tunnel resulted in similar binding conformations and binding energies when compared with simulations with the full-length protein. Steered MD was used to determine details of the mechanism used by Osh4 to release cholesterol to the cytoplasm. Phe(42), Gln(96), Asn(165), Gln(181), Pro(211), and Ile(206) are found to direct the cholesterol as it exits the binding tunnel as well as Lys(109). The mechanism of sterol release is conceptualized as a molecular ladder with the rungs being amino acids or water-mediated amino acids that interact with 3-OH.  相似文献   

2.
Steroidogenic acute regulatory protein-related lipid transfer (StART) domains are ubiquitously involved in intracellular lipid transport and metabolism and other cell-signaling events. In this work, we use a flexible docking algorithm, comparative modeling, and molecular dynamics (MD) simulations to generate plausible three-dimensional atomic models of the StART domains of human metastatic lymph node 64 (MLN64) and steroidogenic acute regulatory protein (StAR) proteins in complex with cholesterol. Our results show that cholesterol can adopt a similar conformation in the binding cavity in both cases and that the main contribution to the protein-ligand interaction energy derives from hydrophobic contacts. However, hydrogen-bonding and water-mediated interactions appear to be important in the fine-tuning of the binding affinity and the position of the ligand. To gain insights into the mechanism of binding, we carried out steered MD simulations in which cholesterol was gradually extracted from within the StAR model. These simulations indicate that a transient opening of loop Omega1 may be sufficient for uptake and release, and they also reveal a pathway of intermediate states involving residues known to be crucial for StAR activity. Based on these observations, we suggest specific mutagenesis targets for binding studies of cholesterol and its derivatives that could improve our understanding of the structural determinants for ligand binding by sterol carrier proteins.  相似文献   

3.
Ligand‐regulated pregnane X receptor (PXR), a member of the nuclear receptor superfamily, plays a central role in xenobiotic metabolism. Despite its critical role in drug metabolism, PXR activation can lead to adverse drug‐drug interactions and early stage metabolism of drugs. Activated PXR can induce cancer drug resistance and enhance the onset of malignancy. Since promiscuity in ligand binding makes it difficult to develop competitive inhibitors targeting PXR ligand binding pocket (LBP), it is essential to identify allosteric sites for effective PXR antagonism. Here, molecular dynamics (MD) simulation studies unravelled the existence of two different conformational states, namely “expanded” and “contracted”, in apo PXR ligand binding domain (LBD). Ligand binding events shifted this conformational equilibrium and locked the LBD in a single “ligand‐adaptable” conformational state. Ensemble‐based computational solvent mapping identified a transiently open potential small molecule binding pocket between α5 and α8 helices, named “α8 pocket”, whose opening‐closing mechanism directly correlated with the conformational shift in LBD. A virtual hit identified through structure‐based virtual screening against α8 pocket locks the pocket in its open conformation. MD simulations further revealed that the presence of small molecule at allosteric site disrupts the LBD dynamics and locks the LBD in a “tightly‐contracted” conformation. The molecular details provided here could guide new structural studies to understand PXR activation and antagonism.  相似文献   

4.
Structural and dynamic properties from a series of 300 ns molecular dynamics, MD, simulations of two intracellular lipid binding proteins, iLBPs, (Fatty Acid Binding Protein 5, FABP5, and Cellular Retinoic Acid Binding Protein II, CRABP-II) in both the apo form and when bound with retinoic acid reveal a high degree of protein and ligand flexibility. The ratio of FABP5 to CRABP-II in a cell may determine whether it undergoes natural apoptosis or unrestricted cell growth in the presence of retinoic acid. As a result, FABP5 is a promising target for cancer therapy. The MD simulations presented here reveal distinct differences in the two proteins and provide insight into the binding mechanism. CRABP-II is a much larger, more flexible protein that closes upon ligand binding, where FABP5 transitions to an open state in the holo form. The traditional understanding obtained from crystal structures of the gap between two β-sheets of the β-barrel common to iLBPs and the α-helix cap that forms the portal to the binding pocket is insufficient for describing protein conformation (open vs. closed) or ligand entry and exit. When the high degree of mobility between multiple conformations of both the ligand and protein are examined via MD simulation, a new mode of ligand motion that improves understanding of binding dynamics is revealed.  相似文献   

5.
Monoglyceride lipase (MGL) is a serine hydrolase that hydrolyses 2-arachidonoylglycerol (2-AG) into arachidonic acid and glycerol. 2-AG is an endogenous ligand of cannabinoid receptors, involved in various physiological processes in the brain. We present here the first crystal structure of human MGL in its apo form and in complex with the covalent inhibitor SAR629. MGL shares the classic fold of the α/β hydrolase family but depicts an unusually large hydrophobic occluded tunnel with a highly flexible lid at its entry and the catalytic triad buried at its end. Structures reveal the configuration of the catalytic triad and the shape and nature of the binding site of 2-AG. The bound structure of SAR629 highlights the key interactions for productive binding with MGL. The shape of the tunnel suggests a high druggability of the protein and provides an attractive template for drug discovery.  相似文献   

6.
The enzyme adenylate kinase (ADK) features two substrate binding domains that undergo large-scale motions during catalysis. In the apo state, the enzyme preferentially adopts a globally open state with accessible binding sites. Binding of two substrate molecules (AMP + ATP or ADP + ADP) results in a closed domain conformation, allowing efficient phosphoryl-transfer catalysis. We employed molecular dynamics simulations to systematically investigate how the individual domain motions are modulated by the binding of substrates. Two-dimensional free-energy landscapes were calculated along the opening of the two flexible lid domains for apo and holo ADK as well as for all single natural substrates bound to one of the two binding sites of ADK. The simulations reveal a strong dependence of the conformational ensembles on type and binding position of the bound substrates and a nonsymmetric behavior of the lid domains. Altogether, the ensembles suggest that, upon initial substrate binding to the corresponding lid site, the opposing lid is maintained open and accessible for subsequent substrate binding. In contrast, ATP binding to the AMP-lid induces global domain closing, preventing further substrate binding to the ATP-lid site. This might constitute a mechanism by which the enzyme avoids the formation of a stable but enzymatically unproductive state.  相似文献   

7.
8.
ER-plasma membrane (PM) contacts are proposed to be held together by distinct families of tethering proteins, which in yeast include the VAP homologues Scs2/22, the extended-synaptotagmin homologues Tcb1/2/3, and the TMEM16 homologue Ist2. It is unclear whether these tethers act redundantly or whether individual tethers have specific functions at contacts. Here, we show that Ist2 directly recruits the phosphatidylserine (PS) transport proteins and ORP family members Osh6 and Osh7 to ER–PM contacts through a binding site located in Ist2’s disordered C-terminal tethering region. This interaction is required for phosphatidylethanolamine (PE) production by the PS decarboxylase Psd2, whereby PS transported from the ER to the PM by Osh6/7 is endocytosed to the site of Psd2 in endosomes/Golgi/vacuoles. This role for Ist2 and Osh6/7 in nonvesicular PS transport is specific, as other tethers/transport proteins do not compensate. Thus, we identify a molecular link between the ORP and TMEM16 families and a role for endocytosis of PS in PE synthesis.  相似文献   

9.
OSBP (oxysterol-binding protein) homologues, ORPs (OSBP-related proteins), constitute a 12-member family in mammals. We employed an in vitro [3H]25OH (25-hydroxycholesterol)-binding assay with purified recombinant proteins as well as live cell photo-cross-linking with [3H]photo-25OH and [3H]photoCH (photo-cholesterol), to investigate sterol binding by the mammalian ORPs. ORP1 and ORP2 [a short ORP consisting of an ORD (OSBP-related ligand-binding domain) only] were in vitro shown to bind 25OH. GST (glutathione S-transferase) fusions of the ORP1L [long variant with an N-terminal extension that carries ankyrin repeats and a PH domain (pleckstrin homology domain)] and ORP1S (short variant consisting of an ORD only) variants bound 25OH with similar affinity (ORP1L, K(d)=9.7x10(-8) M; ORP1S, K(d)=8.4 x10(-8) M), while the affinity of GST-ORP2 for 25OH was lower (K(d)=3.9x10(-6) M). Molecular modelling suggested that ORP2 has a sterol-binding pocket similar to that of Saccharomyces cerevisiae Osh4p. This was confirmed by site-directed mutagenesis of residues in proximity of the bound sterol in the structural model. Substitution of Ile249 by tryptophan or Lys150 by alanine markedly inhibited 25OH binding by ORP2. In agreement with the in vitro data, ORP1L, ORP1S, and ORP2 were cross-linked with photo-25OH in live COS7 cells. Furthermore, in experiments with either truncated cDNAs encoding the OSBP-related ligand-binding domains of the ORPs or the full-length proteins, photo-25OH was bound to OSBP, ORP3, ORP4, ORP5, ORP6, ORP7, ORP8, ORP10 and ORP11. In addition, the ORP1L variant and ORP3, ORP5, and ORP8 were cross-linked with photoCH. The present study identifies ORP1 and ORP2 as OSBPs and suggests that most of the mammalian ORPs are able to bind sterols.  相似文献   

10.
Argonaute proteins in combination with short microRNA (miRNAs) can target mRNA molecules for translation inhibition or degradation and play a key role in many regulatory processes. The miRNAs act as guide RNAs that associate with Argonaute and the complementary mRNA target region. The complex formation results in activation of Argonaute and specific cleavage of the target mRNA. Both the binding and activation processes involve essential domain rearrangements of functional importance. For the Thermus Thermophilus Argonaute (TtAgo) system guide-bound (binary) and guide/target-bound (ternary) complexes are known but how the binding of guide and target mediate domain movements is still not understood. We have studied the Argonaute domain motion in apo and guide/target bound states using Molecular Dynamics simulations and a Hamiltonian replica exchange (H-REMD) method that employs a specific biasing potential to accelerate domain motions. The H-REMD technique indicates sampling of a much broader distribution of domain arrangements both in the apo as well as binary and ternary complexes compared to regular MD simulations. In the apo state domain arrangements corresponding to more compact (closed) states are mainly sampled which undergo an opening upon guide and guide/target binding. Whereas only limited overlap in domain geometry between apo and bound states was found, a larger similarity in the domain distribution is observed for the simulations of binary and ternary complexes. Comparative simulations on ternary complexes with 15 or 16 base pairs (bp) formed between guide and target strands (instead of 14) resulted in dissociation of the 3’-guide strand from the PAZ domain and domain rearrangement. This agrees with the experimental observation that guide-target pairing beyond 14 bps is required for activation and gives a mechanistic explanation for the experimentally observed activation process.  相似文献   

11.
Major histocompatibility (MHC) Class II cell surface proteins present antigenic peptides to the immune system. Class II structures in complex with peptides but not in the absence of peptide are known. Comparative molecular dynamics (MD) simulations of a Class II protein (HLA-DR3) with and without CLIP (invariant chain-associated protein) peptide were performed starting from the CLIP-bound crystal structure. Depending on the protonation of acidic residues in the P6 peptide-binding pocket the simulations stayed overall close to the start structure. The simulations without CLIP showed larger conformational fluctuations especially of alpha-helices flanking the binding cleft. Largest fluctuations without CLIP were observed in a helical segment near the peptide C-terminus binding region matching a segment recognized by antibodies specific for empty Class II proteins. Simulations on a Val86Tyr mutation that fills the peptide N-terminus binding P1 pocket or of a complex with a CLIP fragment (dipeptide) bound to P1 showed an unexpected long range effect. In both simulations the mobility not only of P1 but also of the entire binding cleft was reduced compared to simulations without CLIP. It correlates with the experimental finding that the CLIP fragment binding to P1 is sufficient to prevent antibody recognition specific for the empty form at a site distant from P1. The results suggest a mechanism how a local binding event of small peptides or of an exchange factor near P1 may promote peptide binding and exchange through a long range stabilization of the whole binding cleft in a receptive (near bound) conformation.  相似文献   

12.
Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.  相似文献   

13.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a family of sterol and phosphoinositide binding proteins conserved in eukaryotes. The mechanisms of ORP function have remained incompletely understood. However, several ORPs are present at membrane contact sites and control the activity of enzymatic effectors or assembly of protein complexes, with impacts on signaling, vesicle transport, and lipid metabolism. An increasing number of protein interaction partners of ORPs have been identified, providing clues of their involvement in multiple aspects of cell regulation.The functions assigned for mammalian ORPs include coordination of sterol and sphingolipid metabolism and mitogenic signaling (OSBP), control of ER-late endosome (LE) contacts and LE motility (ORP1L), neutral lipid metabolism (ORP2), cell adhesion (ORP3), cholesterol eggress from LE (ORP5), macrophage lipid homeostasis, migration and high-density lipoprotein metabolism (ORP8), apolipoprotein B-100 secretion (ORP10), and adipogenesis (ORP11). The anti-proliferative ORPphilin compounds target OSBP and ORP4, revealing a function of ORPs in cell proliferation and survival. The Saccharomyces cerevisiae OSBP homologue (Osh) proteins execute multifaceted functions in sterol and sphingolipid homeostasis, post-Golgi vesicle transport, as well as phosphatidylinositol-4-phosphate and target of rapamycin complex 1 (TORC1) signaling. These observations identify ORPs as coordinators of lipid signals with an unforeseen variety of cellular processes.  相似文献   

14.
CD81 plays a central role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the large extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol-sensing mechanism; however, its relevance for protein function is thus far unknown. In this study we investigate CD81 cholesterol sensing in the context of its activity as a receptor for hepatitis C virus (HCV). Structure-led mutagenesis of the cholesterol-binding pocket reduced CD81–cholesterol association but had disparate effects on HCV entry, both reducing and enhancing CD81 receptor activity. We reasoned that this could be explained by alterations in the consequences of cholesterol binding. To investigate this further we performed molecular dynamic simulations of CD81 with and without cholesterol; this identified a potential allosteric mechanism by which cholesterol binding regulates the conformation of CD81. To test this, we designed further mutations to force CD81 into either the open (cholesterol-unbound) or closed (cholesterol-bound) conformation. The open mutant of CD81 exhibited reduced HCV receptor activity, whereas the closed mutant enhanced activity. These data are consistent with cholesterol sensing switching CD81 between a receptor active and inactive state. CD81 interactome analysis also suggests that conformational switching may modulate the assembly of CD81–partner protein networks. This work furthers our understanding of the molecular mechanism of CD81 cholesterol sensing, how this relates to HCV entry, and CD81''s function as a molecular scaffold; these insights are relevant to CD81''s varied roles in both health and disease.  相似文献   

15.
Conformational transitions are functionally important in many proteins. In the enzyme adenylate kinase (AK), two small domains (LID and NMP) close over the larger CORE domain; the reverse (opening) motion limits the rate of catalytic turnover. Here, using double-well Gō simulations of Escherichia coli AK, we elaborate on previous investigations of the AK transition mechanism by characterizing the contributions of rigid-body (Cartesian), backbone dihedral, and contact motions to transition-state (TS) properties. In addition, we compare an apo simulation to a pseudo-ligand-bound simulation to reveal insights into allostery. In Cartesian space, LID closure precedes NMP closure in the bound simulation, consistent with prior coarse-grained models of the AK transition. However, NMP-first closure is preferred in the apo simulation. In backbone dihedral space, we find that, as expected, backbone fluctuations are reduced in the O/C transition in parts of all three domains. Among these “quenching” residues, most in the CORE, especially residues 11–13, are rigidified in the TS of the bound simulation, while residues 42–44 in the NMP are flexible in the TS. In contact space, in both apo and bound simulations, one nucleus of closed-state contacts includes parts of the NMP and CORE; CORE–LID contacts are absent in the TS of the apo simulation but formed in the TS of the bound simulation. From these results, we predict mutations that will perturb the opening and/or closing transition rates by changing the entropy of dihedrals and/or the enthalpy of contacts. Furthermore, regarding allostery, the fully closed structure is populated in the apo simulation, but our contact results imply that ligand binding shifts the preferred O/C transition pathway, thus precluding a simple conformational selection mechanism. Finally, the analytical approach and the insights derived from this work may inform the rational design of flexibility and allostery in proteins.  相似文献   

16.
Endothelial protein C receptor (EPCR) is a CD1‐like transmembrane glycoprotein with important regulatory roles in protein C (PC) pathway, enhancing PC's anticoagulant, anti‐inflammatory, and antiapoptotic activities. Similarly to homologous CD1d, EPCR binds a phospholipid [phosphatidylethanolamine (PTY)] in a groove corresponding to the antigen‐presenting site, although it is not clear if lipid exchange can occur in EPCR as in CD1d. The presence of PTY seems essential for PC γ‐carboxyglutamic acid (Gla) domain binding. However, the lipid‐free form of the EPCR has not been characterized. We have investigated the structural role of PTY on EPCR, by multiple molecular dynamics (MD) simulations of ligand bound and unbound forms of the protein. Structural changes, subsequent to ligand removal, led to identification of two stable and folded ligand‐free conformations. Compared with the bound form, unbound structures showed a narrowing of the A′ pocket and a high flexibility of the helices around it, in agreement with CD1d simulation. Thus, a lipid exchange with a mechanism similar to CD1d is proposed. In addition, unbound conformations presented a reduced interaction surface for Gla domain, confirming the role of PTY in establishing the proper EPCR conformation for the interaction with its partner protein. Single MD simulations were also obtained for 29 mutant models with predicted structural stability and impaired binding ability. Ligand affinity calculations, based on linear interaction energy method, showed that substitution‐induced conformational changes affecting helices around the A′ pocket were associated to a reduced binding affinity. Mutants responsible for this effect may represent useful reagents for experimental tests. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
氧化固醇结合蛋白结构、功能与应用   总被引:1,自引:0,他引:1  
氧化固醇结合蛋白(oxysterol binding protein,OSBP)是存在于真核细胞内的一类参与脂质代谢的非囊泡运输蛋白质,在哺乳动物中被称为氧化固醇结合蛋白相关蛋白质(oxysterol binding protein-related proteins,ORPs),而在酵母中被称为氧化固醇结合蛋白同源物质(oxysterol-binding protein homologues,OSH)。近年来人们对氧化固醇结合蛋白的研究不断深入,特别是对其同源蛋白质(例如,ORP5/8、Osh3/4、ORP4L等)的结构功能差异和其在信号转导中的作用的相关研究,以及在生物医药方面的应用更成为了本领域的热点。本文综述了关于OSBP及其同源蛋白质结构和功能的相关研究,指出了该领域存在的一些关键问题。与此同时,对OSH和ORPs在细胞内的膜接触位点(membrane contact sites,MCS)进行对比,以及对今后OSBP的研究方向做了展望。  相似文献   

18.
Cholesteryl ester transfer protein (CETP) transports cholesteryl esters, triglycerides, and phospholipids between different lipoprotein fractions in blood plasma. The inhibition of CETP has been shown to be a sound strategy to prevent and treat the development of coronary heart disease. We employed molecular dynamics simulations to unravel the mechanisms associated with the CETP-mediated lipid exchange. To this end we used both atomistic and coarse-grained models whose results were consistent with each other. We found CETP to bind to the surface of high density lipoprotein (HDL) -like lipid droplets through its charged and tryptophan residues. Upon binding, CETP rapidly (in about 10 ns) induced the formation of a small hydrophobic patch to the phospholipid surface of the droplet, opening a route from the core of the lipid droplet to the binding pocket of CETP. This was followed by a conformational change of helix X of CETP to an open state, in which we found the accessibility of cholesteryl esters to the C-terminal tunnel opening of CETP to increase. Furthermore, in the absence of helix X, cholesteryl esters rapidly diffused into CETP through the C-terminal opening. The results provide compelling evidence that helix X acts as a lid which conducts lipid exchange by alternating the open and closed states. The findings have potential for the design of novel molecular agents to inhibit the activity of CETP.  相似文献   

19.
Low‐density lipoprotein (LDL)‐cholesterol delivery from late endosomes to the plasma membrane regulates focal adhesion dynamics and cell migration, but the mechanisms controlling it are poorly characterized. Here, we employed auxin‐inducible rapid degradation of oxysterol‐binding protein‐related protein 2 (ORP2/OSBPL2) to show that endogenous ORP2 mediates the transfer of LDL‐derived cholesterol from late endosomes to focal adhesion kinase (FAK)‐/integrin‐positive recycling endosomes in human cells. In vitro, cholesterol enhances membrane association of FAK to PI(4,5)P2‐containing lipid bilayers. In cells, ORP2 stimulates FAK activation and PI(4,5)P2 generation in endomembranes, enhancing cell adhesion. Moreover, ORP2 increases PI(4,5)P2 in NPC1‐containing late endosomes in a FAK‐dependent manner, controlling their tubulovesicular trafficking. Together, these results provide evidence that ORP2 controls FAK activation and LDL‐cholesterol plasma membrane delivery by promoting bidirectional cholesterol/PI(4,5)P2 exchange between late and recycling endosomes.  相似文献   

20.
1. The amount of apolipoprotein B (apo B) was measured using slit-immunoblotting in 20 specimens of radicular cyst fluids. Apo B was detected in all the cyst fluids with varying amounts. 2. Relationship between the amounts of apo B and free cholesterol or activity of heat-stable cholesterol-binding protein (HCBP) were examined. The amount of apo B was correlated well with the activity of HCBP (n = 20, r = 0.72, P less than 0.01) and with the amount of free cholesterol (n = 20, r = 0.45, P less than 0.05). 3. Anti-human apo B antibody inhibited cholesterol-binding activity in radicular cyst fluid. 4. When human-serum was chromatographed on a HPLC ion-exchange column, both cholesterol-binding activity and apo B had exactly the same retention time. 5. These results suggest that HCBP originates from beta-lipoprotein, and beta-lipoprotein may have an important role in cholesterol accumulation on radicular cysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号