首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大肠杆菌分泌蛋白二硫键的形成是一系列蛋白协同作用的结果,主要是Dsb家族蛋白,迄今为止共发现了DsbA、DsbB、DsbC、DsbD、DsbE和DsbG。在体内,DsbA负责氧化两个巯基形成二硫键,DsbB则负责DsbA的再氧化。DsbC和DsbG负责校正DsbA导入的异常二硫键,DsbD则负责对DsbC和DsbG进行再还原,DsbE的功能与DsbD类似。除了直接和二硫键的形成相关外,DsbA、DsbC和DsbG都有分子伴侣功能。它们的分子伴侣功能独立于二硫键形成酶的活性并且对二硫键形成酶活性具有明显的促进作用。基于Dsb蛋白的功能特性,利用它们以大肠杆菌为宿主表达外源蛋白,特别是含有二硫键的蛋白,取得了很多成功的例子。本文简要介绍了这方面的进展,显示Dsb蛋白在促进外源蛋白在大肠杆菌中以可溶形式表达方面具有广阔的应用前景。  相似文献   

2.
In Escherichia coli, DsbA introduces disulphide bonds into secreted proteins. DsbA is recycled by DsbB, which generates disulphides from quinone reduction. DsbA is not known to have any proofreading activity and can form incorrect disulphides in proteins with multiple cysteines. These incorrect disulphides are thought to be corrected by a protein disulphide isomerase, DsbC, which is kept in the reduced and active configuration by DsbD. The DsbC/DsbD isomerization pathway is considered to be isolated from the DsbA/DsbB pathway. We show that the DsbC and DsbA pathways are more intimately connected than previously thought. dsbA(-)dsbC(-) mutants have a number of phenotypes not exhibited by either dsbA(-), dsbC(-) or dsbA(-)dsbD(-) mutations: they exhibit an increased permeability of the outer membrane, are resistant to the lambdoid phage Phi80, and are unable to assemble the maltoporin LamB. Using differential two-dimensional liquid chromatographic tandem mass spectrometry/mass spectrometry analysis, we estimated the abundance of about 130 secreted proteins in various dsb(-) strains. dsbA(-)dsbC(-) mutants exhibit unique changes at the protein level that are not exhibited by dsbA(-)dsbD(-) mutants. Our data indicate that DsbC can assist DsbA in a DsbD-independent manner to oxidatively fold envelope proteins. The view that DsbC's function is limited to the disulphide isomerization pathway should therefore be reinterpreted.  相似文献   

3.
We identified and characterized an Erwinia chrysanthemi gene able to complement an Escherichia coli dsbA mutation that prevents disulfide bond formation in periplasmic proteins. This gene, dsbC, codes for a 24 kDa periplasmic protein that contains a characteristic active site sequence of disulfide isomerases, Phe-X-X-X-X-Cys-X-X-Cys. Besides the active site, DsbC has no homology with DsbA, thioredoxin or eukaryotic protein disulfide isomerase and it could define a new subfamily of disulfide isomerases. Purified DsbC protein is able to catalyse insulin oxidation in a dithiothreitol dependent manner. The E.coli gene xprA codes for a protein functionally equivalent to DsbC. The in vivo function of DsbC seems to be the formation of disulfide bonds in proteins. The presence of XprA could explain the residual disulfide isomerase activity existing in dsbA mutants. Re-oxidation of XprA does not seem to occur through DsbB, the protein that probably re-oxidizes DsbA.  相似文献   

4.
In Escherichia coli, the periplasmic disulfide oxidoreductase DsbA is thought to be a powerful but nonspecific oxidant, joining cysteines together the moment they enter the periplasm. DsbC, the primary disulfide isomerase, likely resolves incorrect disulfides. Given the reliance of protein function on correct disulfide bonds, it is surprising that no phenotype has been established for null mutations in dsbC. Here we demonstrate that mutations in the entire DsbC disulfide isomerization pathway cause an increased sensitivity to the redox-active metal copper. We find that copper catalyzes periplasmic disulfide bond formation under aerobic conditions and that copper catalyzes the formation of disulfide-bonded oligomers in vitro, which DsbC can resolve. Our data suggest that the copper sensitivity of dsbC- strains arises from the inability of the cell to rearrange copper-catalyzed non-native disulfides in the absence of functional DsbC. Absence of functional DsbA augments the deleterious effects of copper on a dsbC- strain, even though the dsbA- single mutant is unaffected by copper. This may indicate that DsbA successfully competes with copper and forms disulfide bonds more accurately than copper does. These findings lead us to a model in which DsbA may be significantly more accurate in disulfide oxidation than previously thought, and in which the primary role of DsbC may be to rearrange incorrect disulfide bonds that are formed during certain oxidative stresses.  相似文献   

5.
G Jander  N L Martin    J Beckwith 《The EMBO journal》1994,13(21):5121-5127
DsbB is a protein component of the pathway that leads to disulfide bond formation in periplasmic proteins of Escherichia coli. Previous studies have led to the hypothesis that DsbB oxidizes the periplasmic protein DsbA, which in turn oxidizes the cysteines in other periplasmic proteins to make disulfide bonds. Gene fusion approaches were used to show that (i) DsbB is a membrane protein which spans the membrane four times and (ii) both the N- and C-termini of the protein are in the cytoplasm. Mutational analysis shows that of the six cysteines in DsbB, four are necessary for proper DsbB function in vivo. Each of the periplasmic domains of the protein has two essential cysteines. The two cysteines in the first periplasmic domain are in a Cys-X-Y-Cys configuration that is characteristic of the active site of other proteins involved in disulfide bond formation, including DsbA and protein disulfide isomerase.  相似文献   

6.
We have examined the role of the active-site CXXC central dipeptides of DsbA and DsbC in disulfide bond formation and isomerization in the Escherichia coli periplasm. DsbA active-site mutants with a wide range of redox potentials were expressed either from the trc promoter on a multicopy plasmid or from the endogenous dsbA promoter by integration of the respective alleles into the bacterial chromosome. The dsbA alleles gave significant differences in the yield of active murine urokinase, a protein containing 12 disulfides, including some that significantly enhanced urokinase expression over that allowed by wild-type DsbA. No direct correlation between the in vitro redox potential of dsbA variants and the urokinase yield was observed. These results suggest that the active-site CXXC motif of DsbA can play an important role in determining the folding of multidisulfide proteins, in a way that is independent from DsbA's redox potential. However, under aerobic conditions, there was no significant difference among the DsbA mutants with respect to phenotypes depending on the oxidation of proteins with few disulfide bonds. The effect of active-site mutations in the CXXC motif of DsbC on disulfide isomerization in vivo was also examined. A library of DsbC expression plasmids with the active-site dipeptide randomized was screened for mutants that have increased disulfide isomerization activity. A number of DsbC mutants that showed enhanced expression of a variant of human tissue plasminogen activator as well as mouse urokinase were obtained. These DsbC mutants overwhelmingly contained an aromatic residue at the C-terminal position of the dipeptide, whereas the N-terminal residue was more diverse. Collectively, these data indicate that the active sites of the soluble thiol- disulfide oxidoreductases can be modulated to enhance disulfide isomerization and protein folding in the bacterial periplasmic space.  相似文献   

7.
In Escherichia coli, a family of periplasmic disulfide oxidoreductases catalyzes correct disulfide bond formation in periplasmic and secreted proteins. Despite the importance of native disulfide bonds in the folding and function of many proteins, a systematic investigation of the in vivo substrates of E. coli periplasmic disulfide oxidoreductases, including the well characterized oxidase DsbA, has not yet been performed. We combined a modified osmotic shock periplasmic extract and two-dimensional gel electrophoresis to identify substrates of the periplasmic oxidoreductases DsbA, DsbC, and DsbG. We found 10 cysteine-containing periplasmic proteins that are substrates of the disulfide oxidase DsbA, including PhoA and FlgI, previously established DsbA substrates. This technique did not detect any in vivo substrates of DsbG, but did identify two substrates of DsbC, RNase I and MepA. We confirmed that RNase I is a substrate of DsbC both in vivo and in vitro. This is the first time that DsbC has been shown to affect the in vivo function of a native E. coli protein, and the results strongly suggest that DsbC acts as a disulfide isomerase in vivo. We also demonstrate that DsbC, but not DsbG, is critical for the in vivo activity of RNase I, indicating that DsbC and DsbG do not function identically in vivo. The absence of substrates for DsbG suggests either that the in vivo substrate specificity of DsbG is more limited than that of DsbC or that DsbG is not active under the growth conditions tested. Our work represents one of the first times the in vivo substrate specificity of a folding catalyst system has been systematically investigated. Because our methodology is based on the simple assumption that the absence of a folding catalyst should cause its substrates to be present at decreased steady-state levels, this technique should be useful in analyzing the substrate specificity of any folding catalyst or chaperone for which mutations are available.  相似文献   

8.
When eukaryotic proteins with multiple disulfide bonds are expressed at high levels in Escherichia coli, the efficiency of thiol oxidation and isomerization is typically not sufficient to yield soluble products with native structures. Even when such proteins are secreted into the oxidizing periplasm or expressed in the cytoplasm of cells carrying mutations in the major intracellular disulfide bond reduction systems (e.g., trxB gor mutants), correct folding can be problematic unless a folding modulator is simultaneously coexpressed. In the present study we explored whether the bacterial twin-arginine translocation (Tat) pathway could serve as an alternative expression system for obtaining appreciable levels of recombinant proteins which exhibit complex patterns of disulfide bond formation, such as full-length human tissue plasminogen activator (tPA) (17 disulfides) and a truncated but enzymatically active version of tPA containing nine disulfides (vtPA). Remarkably, targeting of both tPA and vtPA to the Tat pathway resulted in active protein in the periplasmic space. We show here that export by the Tat translocator is dependent upon oxidative protein folding in the cytoplasm of trxB gor cells prior to transport. Whereas previous efforts to produce high levels of active tPA or vtPA in E. coli required coexpression of the disulfide bond isomerase DsbC, we observed that Tat-targeted vtPA and tPA reach a native conformation without thiol-disulfide oxidoreductase coexpression. These results demonstrate that the Tat system may have inherent and unexpected benefits compared with existing expression strategies, making it a viable alternative for biotechnology applications that hinge on protein expression and secretion.  相似文献   

9.
When eukaryotic proteins with multiple disulfide bonds are expressed at high levels in Escherichia coli, the efficiency of thiol oxidation and isomerization is typically not sufficient to yield soluble products with native structures. Even when such proteins are secreted into the oxidizing periplasm or expressed in the cytoplasm of cells carrying mutations in the major intracellular disulfide bond reduction systems (e.g., trxB gor mutants), correct folding can be problematic unless a folding modulator is simultaneously coexpressed. In the present study we explored whether the bacterial twin-arginine translocation (Tat) pathway could serve as an alternative expression system for obtaining appreciable levels of recombinant proteins which exhibit complex patterns of disulfide bond formation, such as full-length human tissue plasminogen activator (tPA) (17 disulfides) and a truncated but enzymatically active version of tPA containing nine disulfides (vtPA). Remarkably, targeting of both tPA and vtPA to the Tat pathway resulted in active protein in the periplasmic space. We show here that export by the Tat translocator is dependent upon oxidative protein folding in the cytoplasm of trxB gor cells prior to transport. Whereas previous efforts to produce high levels of active tPA or vtPA in E. coli required coexpression of the disulfide bond isomerase DsbC, we observed that Tat-targeted vtPA and tPA reach a native conformation without thiol-disulfide oxidoreductase coexpression. These results demonstrate that the Tat system may have inherent and unexpected benefits compared with existing expression strategies, making it a viable alternative for biotechnology applications that hinge on protein expression and secretion.  相似文献   

10.
A repeating theme in the structural biology of disulfide oxidants and isomerases is the extraordinary architectural similarity between functionally related proteins from prokaryotes and eukaryotes. The recently determined structure of full-length yeast protein disulfide isomerase (PDI) reveals a U-shaped molecule with two redox-active sites. It bears a remarkable resemblance to the V-shaped, but dimeric, bacterial disulfide isomerases DsbC and DsbG. Similarly, the much-anticipated structure of the bacterial membrane protein DsbB, the redox partner of DsbA, comprises a flexible redox loop embedded in an antiparallel four-helix bundle. This architecture is similar to that of soluble eukaryotic Ero1p and Erv2p proteins, the redox partners of PDI. Importantly, the DsbB crystal structure is a complex with DsbA, providing our first view of the molecular interactions between these two proteins.  相似文献   

11.
There are two distinct pathways for disulfide formation in prokaryotes. The DsbA-DsbB pathway introduces disulfide bonds de novo, while the DsbC-DsbD pathway functions to isomerize disulfides. One of the key questions in disulfide biology is how the isomerase pathway is kept separate from the oxidase pathway in vivo. Cross-talk between these two systems would be mutually destructive. To force communication between these two systems we have selected dsbC mutants that complement a dsbA null mutation. In these mutants, DsbC is present as a monomer as compared with dimeric wild-type DsbC. Based on these findings we rationally designed DsbC mutants in the dimerization domain. All of these mutants are able to rescue the dsbA null phenotype. Rescue depends on the presence of DsbB, the native re-oxidant of DsbA, both in vivo and in vitro. Our results suggest that dimerization acts to protect DsbC's active sites from DsbB-mediated oxidation. These results explain how oxidative and reductive pathways can co-exist in the periplasm of Escherichia coli.  相似文献   

12.
The Escherichia coli disulfide isomerase, DsbC is a V-shaped homodimer with each monomer comprising a dimerization region that forms part of a putative peptide-binding pocket and a thioredoxin catalytic domain. Disulfide isomerases from prokaryotes and eukaryotes exhibit little sequence homology but display very similar structural organization with two thioredoxin domains facing each other on top of the dimerization/peptide-binding region. To aid the understanding of the mechanistic significance of thioredoxin domain dimerization and of the peptide-binding cleft of DsbC, we constructed a series of protein chimeras comprising unrelated protein dimerization domains fused to thioredoxin superfamily enzymes. Chimeras consisting of the dimerization domain and the alpha-helical linker of the bacterial proline cis/trans isomerase FkpA and the periplasmic oxidase DsbA gave rise to enzymes that catalyzed the folding of multidisulfide substrate proteins in vivo with comparable efficiency to E. coli DsbC. In addition, expression of FkpA-DsbAs conferred modest resistance to CuCl2, a phenotype that depends on disulfide bond isomerization. Selection for resistance to elevated CuCl2 concentrations led to the isolation of FkpA-DsbA mutants containing a single amino acid substitution that changed the active site of the DsbA domain from CPHC into CPYC, increasing the similarity to the DsbC active site (CGYC). Unlike DsbC, which is resistant to oxidation by DsbB-DsbA and does not normally catalyze disulfide bond formation under physiological conditions, the FkpA-DsbA chimeras functioned both as oxidases and isomerases. The engineering of these efficient artificial isomerases delineates the key features of catalysis of disulfide bond isomerization and enhances our understanding of its evolution.  相似文献   

13.
We have identified and functionally characterized a new Escherichia coli gene, dsbC, whose product is involved in disulfide bond formation in the periplasmic space. It corresponds to a previously sequenced open reading frame mapping upstream of recJ with no previously assigned function. Null mutations in dsbC were obtained using a screen for dithiothreitol (DTT)-sensitive mutants and were shown to result in the accumulation of reduced forms of a variety of disulfide bond-containing periplasmic proteins. This defect could be rescued by the addition of either oxidized DTT or cystine or by multicopy expression of dsbA, a known periplasmic disulfide oxidase. The DsbC protein is synthesized as a precursor form of 25.5 kDa which is processed to a 23.3 kDa mature species located in the periplasmic space. The DsbC protein was overexpressed, purified to homogeneity and shown to catalyse the reduction of insulin in a DTT-dependent manner at levels comparable with those of purified DsbA. The replacement of either cysteine residue of the predicted active site, F-(X4)-C-G-Y-C, completely inactivates DsbC protein function. We have further shown that in vivo overexpression of DsbC can functionally substitute for a loss of DsbA function. Taken together, all of our results demonstrate that DsbC acts in vivo as a disulfide oxidase.  相似文献   

14.
The chemistry of disulfide exchange in biological systems is well studied. However, very little information is available concerning the actual origin of disulfide bonds. Here we show that DsbB, a protein required for disulfide bond formation in vivo, uses the oxidizing power of quinones to generate disulfides de novo. This is a novel catalytic activity, which to our knowledge has not yet been described. This catalytic activity is apparently the major source of disulfides in vivo. We developed a new assay to characterize further this previously undescribed enzymatic activity, and we show that quinones get reduced during the course of the reaction. DsbB contains a single high affinity quinone-binding site. We reconstitute oxidative folding in vitro in the presence of the following components that are necessary in vivo: DsbA, DsbB, and quinone. We show that the oxidative refolding of ribonuclease A is catalyzed by this system in a quinone-dependent manner. The disulfide isomerase DsbC is required to regain ribonuclease activity suggesting that the DsbA-DsbB system introduces at least some non-native disulfide bonds. We show that the oxidative and isomerase systems are kinetically isolated in vitro. This helps explain how the cell avoids oxidative inactivation of the disulfide isomerization pathway.  相似文献   

15.
Dsb proteins (DsbA, DsbB, DsbC, and DsbD) catalyze formation and isomerization of protein disulfide bonds in the periplasm of Escherichia coli. By using a set of Dsb coexpression plasmids constructed recently, we analyzed the effects of Dsb overexpression on production of horseradish peroxidase (HRP) isozyme C that contains complex disulfide bonds and tends to aggregate when produced in E. coli. When transported to the periplasm, HRP was unstable but was markedly stabilized upon simultaneous overexpression of the set of Dsb proteins (DsbABCD). Whereas total HRP production increased severalfold upon overexpression of at least disulfide-bonded isomerase DsbC, maximum transport of HRP to the periplasm seemed to require overexpression of all DsbABCD proteins, suggesting that excess Dsb proteins exert synergistic effects in assisting folding and transport of HRP. Periplasmic production of HRP also increased when calcium, thought to play an essential role in folding of nascent HRP polypeptide, was added to the medium with or without Dsb overexpression. These results suggest that Dsb proteins and calcium play distinct roles in periplasmic production of HRP, presumably through facilitating correct folding. The present Dsb expression plasmids should be useful in assessing and dissecting periplasmic production of proteins that contain multiple disulfide bonds in E. coli.  相似文献   

16.
In oxidative folding of proteins in the bacterial periplasmic space, disulfide bonds are introduced by the oxidation system and isomerized by the reduction system. These systems utilize the oxidizing and the reducing equivalents of quinone and NADPH, respectively, that are transmitted across the cytoplasmic membrane through integral membrane components DsbB and DsbD. In both pathways, alternating interactions between a Cys-XX-Cys-containing thioredoxin domain and other regulatory domain lead to the maintenance of oxidized and reduced states of the specific terminal enzymes, DsbA that oxidizes target cysteines and DsbC that reduces an incorrect disulfide to allow its isomerization into the physiological one. Molecular details of these remarkable biochemical cascades are being rapidly unraveled by genetic, biochemical, and structural analyses in recent years.  相似文献   

17.
When brain-derived neurotrophic factor (BDNF) is produced in the Escherichia coli periplasm, insoluble BDNF proteins with low biological activity and having mismatched disulfide linkages are formed. The coexpression of cysteine oxidoreductases (DsbA and DsbC) and membrane-bound enzymes (DsbB and DsbD), which play an important role in the formation of disulfide bonds in the periplasm, was investigated to improve the production of soluble and biologically active BDNF. The expression levels of Dsb proteins changed when the growth medium and the Dsb expression plasmids were changed, and the production rate of soluble BDNF was almost proportional to the expression level of DsbC protein with disulfide isomerase activity in the case of a low expression level of BDNF. The rate of soluble BDNF production with coexpression of DsbABCD was as high as 35%. These results show that coexpression of BDNF and Dsb proteins can effectively increase the production of soluble and biologically active BDNF.  相似文献   

18.
Dsb proteins (DsbA, DsbB, DsbC, and DsbD) catalyze formation and isomerization of protein disulfide bonds in the periplasm of Escherichia coli. By using a set of Dsb coexpression plasmids constructed recently, we analyzed the effects of Dsb overexpression on production of horseradish peroxidase (HRP) isozyme C that contains complex disulfide bonds and tends to aggregate when produced in E. coli. When transported to the periplasm, HRP was unstable but was markedly stabilized upon simultaneous overexpression of the set of Dsb proteins (DsbABCD). Whereas total HRP production increased severalfold upon overexpression of at least disulfide-bonded isomerase DsbC, maximum transport of HRP to the periplasm seemed to require overexpression of all DsbABCD proteins, suggesting that excess Dsb proteins exert synergistic effects in assisting folding and transport of HRP. Periplasmic production of HRP also increased when calcium, thought to play an essential role in folding of nascent HRP polypeptide, was added to the medium with or without Dsb overexpression. These results suggest that Dsb proteins and calcium play distinct roles in periplasmic production of HRP, presumably through facilitating correct folding. The present Dsb expression plasmids should be useful in assessing and dissecting periplasmic production of proteins that contain multiple disulfide bonds in E. coli.  相似文献   

19.
Disulfide bond-forming (Dsb) protein is a bacterial periplasmic protein that is essential for the correct folding and disulfide bond formation of secreted or cell wallassociated proteins. DsbA introduces disulfide bonds into folding proteins, and is re-oxidized through interaction with its redox partner DsbB. Mycobacterium tuberculosis, a Gram-positive bacterium, expresses a DsbA-like protein ( Rv2969c), an extracellular protein that has its Nterminus anchored in the cell membrane. Since Rv2969c is an essential gene, crucial for disulfide bond formation, research of DsbA may provide a target of a new class of anti-bacterial drugs for treatment of M.tuberculosis infection. In the present work, the crystal structures of theextracellular region of Rv2969c (Mtb DsbA) were determined in both its reduced and oxidized states. The overall structure of Mtb DsbA can be divided into two domains: a classical thioredoxin-like domain with a typical CXXC active site, and an α-helical domain. It largely resembles its Escherichiacoli homologue EcDsbA, however, it possesses a truncated binding groove; in addition, its active site is surrounded by an acidic, rather than hydrophobic surface. In our oxidoreductase activity assay, Mtb DsbA exhibited a different substrate specificity when compared to EcDsbA. Moreover, structural analysis revealed a second disulfide bond in Mtb DsbA, which is rare in the previously reported DsbA structures, and is assumed to contribute to the overall stability of Mtb DsbA. To investigate the disulphide formation pathway in M.tuberculosis, we modeled Mtb Vitamin K epoxide reductase (Mtb VKOR), a binding partner of Mtb DsbA, to Mtb DsbA.  相似文献   

20.
We describe the NMR structure of DsbB, a polytopic helical membrane protein. DsbB, a bacterial cytoplasmic membrane protein, plays a key role in disulfide bond formation. It reoxidizes DsbA, the periplasmic protein disulfide oxidant, using the oxidizing power of membrane-embedded quinones. We determined the structure of an interloop disulfide bond form of DsbB, an intermediate in catalysis. Analysis of the structure and interactions with substrates DsbA and quinone reveals functionally relevant changes induced by these substrates. Analysis of the structure, dynamics measurements, and NMR chemical shifts around the interloop disulfide bond suggest how electron movement from DsbA to quinone through DsbB is regulated and facilitated. Our results demonstrate the extraordinary utility of NMR for functional characterization of polytopic integral membrane proteins and provide insights into the mechanism of DsbB catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号