首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
2.
Li L  Zhang C  Xu D  Schläppi M  Xu ZQ 《Gene》2012,506(1):50-61
EARLI1 is an Arabidopsis gene with pleiotropic effects previously shown to have auxiliary functions in protecting plants against freezing-induced cellular damage and promoting germinability under low-temperature and salinity stresses. Here we determined whether recombinant EARLI1 protein has anti-fungal activity. Recombinant EARLI1 protein lacking its signal peptide was produced in Escherichia coli BL21(DE3) using isopropyl β-d-1-thiogalactopyranoside (IPTG) induction and the prokaryotic expression vector pET28a. Expression of EARLI1 was analyzed by Western blotting and the protein was purified using affinity chromatography. Recombinant EARLI1 protein was applied to fungal cultures of Saccharomyces cerevisiae, Botrytis cinerea and Fusarium oxysporum, and membrane permeability was determined using SYTOX green. Full-length EARLI1 was expressed in S. cerevisiae from the GAL1 promoter using 2% galactose and yeast cell viability was compared to control cells. Our results indicated that application of recombinant EARLI1 protein to B. cinerea and F. oxysporum could inhibit the growth of the necrotrophic fungi. Besides, addition of the recombinant protein to liquid cultures of S. cerevisiae significantly suppressed yeast growth and cell viability by increasing membrane permeability, and in vivo expression of the secreted form of EARLI1 in S. cerevisiae also had a remarkable inhibition effect on the growth of yeast cells.  相似文献   

3.
Despite recent progress in our understanding of the numerous functions of individual subunits of eukaryotic translation initiation factor (eIF) 3, little is known on the molecular level. Using NMR spectroscopy, we determined the first solution structure of an interaction between eIF3 subunits. We revealed that a conserved tryptophan residue in the human eIF3j N-terminal acidic motif (NTA) is held in the helix α1 and loop 5 hydrophobic pocket of the human eIF3b RNA recognition motif (RRM). Mutating the corresponding “pocket” residues in its yeast orthologue reduces cellular growth rate, eliminates eIF3j/HCR1 association with eIF3b/PRT1 in vitro and in vivo, affects 40S occupancy of eIF3, and produces a leaky scanning defect indicative of a deregulation of the AUG selection process. Unexpectedly, we found that the N-terminal half of eIF3j/HCR1 containing the NTA is indispensable and sufficient for wild-type growth of yeast cells. Furthermore, we demonstrate that deletion of either j/HCR1 or its N-terminal half only, or mutation of the key tryptophan residues results in the severe leaky scanning phenotype partially suppressible by overexpressed eIF1A, which is thought to stabilize properly formed preinitiation complexes at the correct start codon. These findings indicate that eIF3j/HCR1 remains associated with the scanning preinitiation complexes and does not dissociate from the small ribosomal subunit upon mRNA recruitment, as previously believed. Finally, we provide further support for earlier mapping of the ribosomal binding site for human eIF3j by identifying specific interactions of eIF3j/HCR1 with small ribosomal proteins RPS2 and RPS23 located in the vicinity of the mRNA entry channel. Taken together, we propose that eIF3j/HCR1 closely cooperates with the eIF3b/PRT1 RRM and eIF1A on the ribosome to ensure proper formation of the scanning-arrested conformation required for stringent AUG recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号