首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochemical and biological properties of the human N-ras p21 protein.   总被引:11,自引:8,他引:11       下载免费PDF全文
We characterized the normal (Gly-12) and two mutant (Asp-12 and Val-12) forms of human N-ras proteins produced by Escherichia coli. No significant differences were found between normal and mutant p21 proteins in their affinities for GTP or GDP. Examination of GTPase activities revealed significant differences between the mutant p21s: the Val-12 mutant retained 12% of wild-type GTPase activity, whereas the Asp-12 mutant retained 43%. Both mutant proteins, however, were equally potent in causing morphological transformation and increased cell motility after their microinjection into quiescent NIH 3T3 cells. This lack of correlation between transforming potency and GTPase activity or guanine nucleotide binding suggests that position 12 mutations affect other aspects of p21 function.  相似文献   

2.
We have generated deletion mutants of the H-ras p21 protein which lack residues 58 to 63 or 64 to 68 and contain either the normal glycine or an activating mutation, arginine, at position 12. None of the deleted proteins were recognized by monoclonal antibody Y13-259, and those mutants with activating mutations showed at least a 100-fold reduction in their transforming activities compared with the activities of their nondeleted counterparts. Alterations observed in the in vitro GTPase or GTP interchange properties of the deletion mutants were not consistent with the decrease in their transforming activities. Moreover, each mutant showed normal membrane localization, which is essential for its biological activity. Recently, a newly identified protein, designated GTPase-activating protein (GAP), was found to markedly increase GTPase activity of the normal ras p21 but not of p21 mutants bearing activating lesions (H. Adari, D. R. Lowy, B. M. Willumsen, C. J. Der, and F. McCormick, Science 240:518-521, 1988). We showed that GAP had no effect on the in vitro GTPase activity of the deletion mutants of the normal p21 protein. Since similar deletions in mutants with activating lesions at position 12 or 59 or both showed decreased transforming activity, our results suggest that the recognition site for Y13-259 within the ras p21 molecule influences directly or indirectly the interaction of ras p21 with GAP and that this interaction is critical for biological activity of ras proteins.  相似文献   

3.
An Ala-to-Thr substitution at position 59 activates the transforming properties of the p21ras protein without impairment of GTPase activity, a biochemical alteration associated with other activating mutations. To investigate the basis for the transforming properties of the Thr-59 mutant, we characterized guanine nucleotide release. This reaction exhibited a slow rate and stringent temperature requirements. To further dissect the release reaction, we used monoclonal antibodies directed against different epitopes of the p21 molecule. One monoclonal specifically interfered with nucleotide release, while others which recognized different regions of the molecule blocked nucleotide binding. Mutants with the Thr-59 substitution exhibited a three- to ninefold-higher rate of GDP and GTP release than normal p21 or mutants with other activating lesions. This alteration in the Thr-59 mutant would have the effect of increasing its rate of nucleotide exchange. In an intracellular environment with a high GTP/GDP ratio, this would favor the association of GTP with the Thr-59 mutant. Consistent with knowledge of known G-regulatory proteins, these findings support a model in which the p21-GTP complex is the biologically active form of the p21 protein.  相似文献   

4.
Biological and biochemical properties of human rasH genes mutated at codon 61   总被引:67,自引:0,他引:67  
C J Der  T Finkel  G M Cooper 《Cell》1986,44(1):167-176
Using site-directed mutagenesis, we have introduced mutations encoding 17 different amino acids at codon 61 of the human rasH gene. Fifteen of these substitutions increased rasH transforming activity. The remaining two mutants, encoding proline and glutamic acid, displayed transforming activities similar to the normal gene. Overall, these mutants vary over 1000-fold in transforming potency. Increased levels of p21 expression were required for transformation by weakly transforming mutants. The mutant proteins were unaltered in guanine nucleotide binding properties. However, all 17 different mutant proteins displayed equivalently reduced rates of GTP hydrolysis, 8- to 10-fold lower than the normal protein. There was no quantitative correlation between reduction in GTPase activity and transformation, indicating that reduced GTP hydrolysis is not sufficient to activate ras transforming potential.  相似文献   

5.
We sought to determine whether decreased in vitro GTPase activity is uniformly associated with ras p21 mutants possessing efficient transforming properties. Normal H-ras p21-[Gly12-Ala59] as well as an H-ras p21-[Gly12-Thr59] mutant exhibited in vitro GTPase activities at least fivefold higher than either H-ras p21-[Lys12-Ala59] or H-ras p21-[Arg12-Thr59] mutants. Microinjection of as much as 6 X 10(6) molecules/cell of bacterially expressed normal H-ras p21 induced no detectable alterations of NIH/3T3 cells. In contrast, inoculation of 4-5 X 10(5) molecules/cell of each p21 mutant induced morphologic alterations and stimulated DNA synthesis. Moreover, the transforming activity of each mutant expressed in a eukaryotic vector was similar and at least 100-fold greater than that of the normal H-ras gene. These findings establish that activation of efficient transforming properties by ras p21 proteins can occur by mechanisms not involving reduced in vitro GTPase activity.  相似文献   

6.
Friedman ZY  Devary Y 《Proteins》2005,59(3):528-533
Controlling the hydrolysis rate of GTP bound to the p21ras protein is crucial for the delicate timing of many biological processes. A few mechanisms were suggested for the hydrolysis of GTP. To gain more insight into the individual elementary events of GTP hydrolysis, we carried out molecular dynamic analysis of wild-type p21ras and some of its mutants. It was recently shown that Ras-related proteins and mutants generally follow a linear free energy relationship (LFER) relating the rate of reaction to the pK(a) of the gamma-phosphate group of the bound GTP, indicating that proton transfer from the attacking water to the GTP is the first elementary event in the GTPase mechanism. However, some exceptions were observed. Thus, the Gly12 --> Aspartic p21ras (G12D) mutant had a very low GTPase activity although its pK(a) was very close to that of the wild-type ras. Here we compared the molecular dynamics (MD) of wild-type Ras and G12D, showing that in the mutant the catalytic water molecule is displaced to a position where proton transfer to GTP is unfavorable. These results suggest that the mechanism of GTPase is indeed composed of an initial proton abstraction from water by the GTP, followed by a nucleophilic attack of the hydroxide ion on the gamma-phosphorus of GTP.  相似文献   

7.
The human rap2 gene encodes a 183 amino acid protein that shares 46% identity with the K-ras p21. Its cDNA was engineered and inserted into the bacterial expression vector ptac; this allowed the production of high levels of soluble recombinant protein in Escherichia coli that was purified to near homogeneity. The rap2 protein binds GTP and exhibits a low intrinsic GTPase activity (rate constant of 0.5 x 10(-2) min-1). It exchanges its bound GDP with a half-life of 18 min at 37 degrees C in the presence of 10 mM Mg2+. Under the same conditions, the dissociation of bound GTP was at least 25-fold slower showing that the rap2 protein has a much higher affinity for GTP than GDP. The contribution of individual domains of the protein to its biochemical activities was investigated by site-directed mutagenesis. Substitution of Val for Gly at position 12 results in a 2-fold decrease in the GDP dissociation rate constant and GTPase activity. Replacement of the Ser at position 17 by Asn severely impairs the GTP binding ability of the protein and points to an important role of this residue in the coordination of Mg2+. Mutation of Thr-35 to Ala results in a decreased affinity for GTP and a reduction (3-fold) of the GTPase activity. Finally, substitution of Thr-145 by Ile leads to an imperfect binding of guanyl nucleotides as exemplified by an increase in their dissociation rate constants and reduction of the GTPase activity of the protein. These properties of the normal and mutant rap2 proteins are compared with those of ras p21 carrying similar substitutions and are discussed in relation to the structural models proposed for ras p21.  相似文献   

8.
Mutational replacements of specific residues in the GTP-binding pocket of the 21-kDa ras proteins (p21ras) reduce their GTPase activity. To test the possibility that the cognate regions of G protein alpha chains participate in GTP binding and hydrolysis, we compared signaling functions of normal and mutated alpha chains (termed alpha s) of Gs, the stimulatory regulator of adenylyl cyclase. alpha s chains were expressed in an alpha s-deficient S49 mouse lymphoma cell line, cyc-. alpha s in which leucine replaces glutamine 227 (corresponding to glutamine 61 of p21ras) constitutively activates adenylyl cyclase and reduces the kcat for GTP hydrolysis more than 100-fold. There is a smaller reduction in GTPase activity in another mutant in which valine replaces glycine 49 (corresponding to glycine 12 of p21ras). This mutant alpha s is a poor activator of adenylyl cyclase. Moreover, the glycine 49 protein, unlike normal alpha s, is not protected against tryptic cleavage by hydrolysis resistant GTP analogs; this finding suggests impairment of the mutant protein's ability to attain the active (GTP-bound) conformation. We conclude that alpha s residues near glutamine 227 and glycine 49 participate in binding and hydrolysis of GTP, although the GTP binding regions of alpha s and p21ras are not identical.  相似文献   

9.
Conserved amino-acids of H-ras from residues 25 to 34 were mutated in human H-ras cDNA with a pre-existing valine-12 activating mutation ([V12]p21), and built into SV40-driven expression vectors. The influence of the introduced mutations was initially screened by transfection of Rat-1 cells to score foci of transformed cells. Nonconservative mutations of amino-acids 25 (tryptophan for glutamine), 27 (asparagine for histidine) and 34 (alanine for proline) did not abrogate the transforming potential of [V12]p21. The conservative mutation of phenylalanine-28 to tryptophan ([V12W28]p21) was also still transforming. Significantly, in the absence of the valine-12 activating mutation, tryptophan-28-ras ([W28]p21) was weakly transforming while, in contrast, [V12D28]p21 was unable to transform Rat-1 cells and retarded cell growth. Analysis of the binding and dissociation of GTP and GDP to normal and mutated p21 expressed in Escherichia coli showed that [V12D28]p21 and [D28]p21 do not bind GTP. The dissociation rate of both GTP and GDP bound to [W28]p21 is increased, suggesting a mechanism for its transforming potential in Rat-1 cells. These studies illustrate the importance of phenylalanine-28 in guanine nucleotide binding by p21 h-ras . The mutations described could be valuable tools in investigations of cellular signal transduction involving small GTP-binding proteins.  相似文献   

10.
Hydrolysis of GTP by the alpha-chain of Gs and other GTP binding proteins   总被引:4,自引:0,他引:4  
The functions of G proteins--like those of bacterial elongation factor (EF) Tu and the 21 kDa ras proteins (p21ras)--depend upon their abilities to bind and hydrolyze GTP and to assume different conformations in GTP- and GDP-bound states. Similarities in function and amino acid sequence indicate that EF-Tu, p21ras, and G protein alpha-chains evolved from a primordial GTP-binding protein. Proteins in all three families appear to share common mechanisms for GTP-dependent conformational change and hydrolysis of bound GTP. Biochemical and molecular genetic studies of the alpha-chain of Gs (alpha s) point to key regions that are involved in GTP-dependent conformational change and in hydrolysis of GTP. Tumorigenic mutations of alpha s in human pituitary tumors inhibit the protein's GTPase activity and cause constitutive elevation of adenylyl cyclase activity. One such mutation replaces a Gln residue in alpha s that corresponds to Gln-61 of p21ras; mutational replacements of this residue in both proteins inhibit their GTPase activities. A second class of GTPase inhibiting mutations in alpha s occurs in the codon for an Arg residue whose covalent modification by cholera toxin also inhibits GTP hydrolysis by alpha s. This Arg residue is located in a domain of alpha s not represented in EF-Tu or p21ras. We propose that this domain constitutes an intrinsic activator of GTP hydrolysis, and that it performs a function analogous to that performed for EF-Tu by the programmed ribosome and for p21ras by the recently discovered GTPase-activating protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Kinetic studies performed on p21H guanine nucleotide complexes with and without Mg2+ show that point mutations at positions 12, 59, and 61 each have a different effect on the rate of nucleotide dissociation. Double mutants with a combination of these amino acid substitutions reveal that the effects of each mutation on these kinetics are interactive (nonadditive) for positions 12 and 59 and approximately additive for the positions 12 and 61. The magnitude and direction of the effects seen are dependent on the nature of the nucleotide and whether or not the complexes contain Mg2+. All the mutants have reduced GTPase activity. It is also shown that the autophosphorylation reaction velocity is of first order with respect to the protein concentration and that this reaction is an intramolecular one, which takes place as a side reaction of the GTPase reaction. The autophosphorylation is not reversible under the experimental conditions. The covalently bound phosphate does not decrease the nucleotide-binding ability of the protein nor does it change the relative affinity of the protein for GTP versus GDP. The results are discussed in terms of the structural model and function of p21H.  相似文献   

12.
The effect of a series of mutations on the transforming potential of normal human rasH has been compared with their effects on GTPase and guanine nucleotide exchange rates of p21. The mutation Val-146 resulted in partial activation of transforming potential which could be attributed to a greater than 1,000-fold-increased rate of nucleotide exchange in the absence of an effect on GTPase. In contrast, the more modest enhancement of exchange rate (approximately 100-fold) which resulted from the mutation Met-14 did not affect biological activity. The partially activating mutation Thr-59 was found to result in both a 5-fold reduction in GTPase and a 10-fold increase in nucleotide exchange. However, the nontransforming mutant Ile-59 displayed a comparable decrease in GTPase without an effect on nucleotide exchange. The activating effect of the Thr-59 mutation may thus represent a combined effect of reduced GTPase and increased exchange. Similarly, the strongly activating mutation Leu-61 resulted in a fivefold increase in nucleotide exchange in addition to decreased GTPase, whereas weakly activating mutations at position 61 (Trp and Pro) resulted only in decreased GTPase without affecting nucleotide exchange rates. Finally, combining the two mutations Met-14 and Ile-59, which alone had no effect on biological activity, yielded a double mutant with a 20-fold increased transforming potential, demonstrating a synergistic effect of these two mutations. Overall, these results indicate that large increases in nucleotide exchange can activate ras transforming potential in the absence of decreased GTPase and that relatively modest increases in nucleotide exchange can act synergistically with decreased GTPase to contribute to ras activation.  相似文献   

13.
v-Ha-ras encoded p21 protein (p21V), the cellular c-Ha-ras encoded protein (p21C) and its T24 mutant form p21T were produced in Escherichia coli under the control of the tac promoter. Large amounts of the authentic proteins in a soluble form can be extracted and purified without the use of denaturants or detergents. All three proteins are highly active in GDP binding, GTPase and, for p21V, autokinase activity. Inhibition of [3H]GDP binding to p21C by regio- and stereospecific phosphorothioate analogs of GDP and GTP was investigated to obtain a measure of the relative affinities of the three diphosphate and five triphosphate analogs of guanosine. p21 has a preference for the Sp isomers of GDP alpha S and GTP alpha S. It has low specificity for the Sp isomer of GTP beta S. Together with the data for GDP beta S and GTP gamma S these results are compared with those obtained for elongation factor (EF)Tu and transducin. This has enabled us to probe the structural relatedness of these proteins. We conclude that p21 seems to be more closely related to EF-Tu than to transducin.  相似文献   

14.
Val20 of elongation factor Tu (EF-Tu), one of the best-characterized GTP binding proteins, is a variable residue within the consensus motif G-X-X-X-X-G-K involved in the interaction with the phosphates of GDP/GTP. To investigate the structure-function relationships of EF-Tu, which is widely used as a model protein, Val20 has been substituted by Gly using oligonucleotide-directed mutagenesis. The most important effects are: (i) a strong reduction of the intrinsic GTPase activity, (ii) a remarkable enhancement of the association and dissociation rates of EF-TuGly20-GDP, mimicking the effect of elongation factor Ts (EF-Ts) and (iii) the inability of ribosomes to influence the intrinsic GTPase of EF-Tu uncoupled from poly(Phe) synthesis. EF-TuGly20 can sustain poly(Phe) synthesis, albeit at a much lower rate than wild-type EF-TuVal20. As with the latter, poly(Phe) synthesis by EF-TuGly20 is inhibited by the antibiotic kirromycin, but differs remarkably in that it is largely independent of the presence of EF-Ts. According to primary sequence alignment, position 20 is homologous to position 12 of ras protein p21. As in p21, this position in EF-Tu is critical, influencing specifically the GDP/GTP interaction as well as other functions. The effect of the mutation displays diversities but also similarities with the situation reported for p21 having the corresponding residues in position 12. The differences observed with two homologous residues, Gly20 and Gly12 in EF-Tu and p21 respectively, show the importance of a variable residue in a consensus element in defining specific functions of GTP binding proteins.  相似文献   

15.
A novel regulatory protein for the rho proteins (rhoA p21 and rhoB p20), belonging to a ras p21/ras p21-like small molecular weight (Mr) GTP-binding protein (G protein) superfamily, was purified to near homogeneity from bovine brain cytosol and characterized. This regulatory protein, designated here as GDP dissociation inhibitor (GDI) for the rho proteins (rho GDI), inhibited the dissociation of GDP from rhoB p20 and the binding of guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) to the GDP-bound form of rhoB p20 but not of that to the guanine nucleotide-free form. The Mr value of rho GDI was estimated to be about 27,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and from the S value, indicating that rho GDI is composed of a single polypeptide without a subunit structure. The isoelectric point was about pH 5.7. rho GDI made a complex with the GDP-bound form of rhoB p20 with a molar ratio of 1:1 but not with the GTP gamma S-bound or guanine nucleotide-free form. rho GDI did not stimulate the GTPase activity of rhoB p20 and by itself showed neither GTP gamma S-binding nor GTPase activity. rho GDI was equally active for rhoA p21 and rhoB p20 but was inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, smg p25A, and smg p21. rho GDI activity was detected in the cytosol fraction of various rat tissues. These results indicate that, in mammalian tissues, there is a novel type of regulatory protein specific for the rho proteins that interacts with the GDP-bound form of the rho proteins and thereby regulates the GDP/GTP exchange reaction of the rho proteins by inhibiting the dissociation of GDP from and the subsequent binding of GTP to them. Since there is a GTPase-activating protein for the rho proteins stimulating the GTPase activity of the rho proteins in mammalian tissues, the rho proteins appear to be regulated at least by GTPase-activating protein and GDI in a dual manner.  相似文献   

16.
The rate constants have been determined for elementary steps in the basal GTPase mechanism of normal p21N-ras (Gly-12) and an oncogenic mutant (Asp-12): namely GTP binding, hydrolysis, phosphate release, and GDP release. By extrapolation from data at lower temperatures, the GTP association rate constant at 37 degrees C is 1.4 x 10(8) M-1 s-1 for the normal protein and 4.8 x 10(8) M-1 s-1 for the mutant. Other rate constants were measured directly at 37 degrees C, and three processes have similar slow values. GTP dissociation is at 1.0 x 10(-4) s-1 (normal) and 5.0 x 10(-4) s-1 (mutant). The hydrolysis step is at 3.4 x 10(-4) s-1 (normal) and 1.5 x 10(-4) s-1 (mutant). GDP dissociates at 4.2 x 10(-4) s-1 (normal) and 2.0 x 10(-4) s-1 (mutant). GDP association rate constants are similar to those for GTP, 0.5 x 10(8) M-1 s-1 for normal and 0.7 x 10(8) M-1 s-1 for mutant. Both hydrolysis and GDP release therefore contribute to rate limitation of the basal GTPase activity. There are distinct differences (up to 5-fold) between rate constants for the normal and mutant proteins at a number of steps. The values are consistent with the reduced GTPase activity for this mutant and suggest little difference between normal and mutant proteins in the relative steady-state concentrations of GTP and GDP complexes that may represent active and inactive states. The results are discussed in terms of the likely role of p21ras in transmembrane signalling.  相似文献   

17.
T cell stimulation via the TCR complex (TCR/CD3 complex) results in activation of the guanine nucleotide binding proteins encoded by the ras protooncogenes (p21ras). In the present study we show that the activation state of p21ras in T lymphocytes can also be controlled by triggering of the CD2 Ag. The activation state of p21ras is controlled by GTP levels on p21ras. In T cells stimulation of protein kinase C is able to induce an accumulation of "active" p21ras-GTP complexes due to an inhibitory effect of protein kinase C stimulation on the intrinsic GTPase activity of p21ras. The regulatory effect of protein kinase C on p21ras GTPase activity appears to be mediated via regulation of GAP, the GTPase activating protein of p21ras. In the present report, we demonstrate that the TCR/CD3 complex and the CD2 Ag control the accumulation of p21ras-GTP complexes via a regulatory effect on p21ras GTPase activity. The TCR/CD3 complex and CD2 Ag are also able to control the cellular activity of GAP. These data demonstrate that p21ras is part of the signal transduction responses controlled by the CD2 Ag, and reveal that the TCR/CD3 complex and CD2 Ag control the activation state of p21ras via a similar mechanism.  相似文献   

18.
Ras (p21) proteins are involved in the control of cell growth and differentiation, but the mechanism by which they exert these effects is not yet known. Here we present evidence that c-Ha-ras (p21(Gly-12)) and its oncogenic mutant T24-ras (p21(Val-12)) selectively induce omega-conotoxin and dihydropyridine-sensitive Ca2+ currents within a few hours after introduction into the cytoplasm of neuroblastoma x glioma hybrid cells. Whereas control cells exhibited a mean Ca2+ current of 250 pA, it amounted to 730 pA in cells pretreated with ras protein. In cells loaded with p21(Gly-12), the effect occurred after 2 hours and was terminated after 8 hours. In contrast, introduction of p21(Val-12) resulted in a prolonged delay (6 hours) of the effect which lasted for more than 24 hours. When ras proteins were preactivated with the non-hydrolysable GTP analog GppNHp, the time courses of both p21(Gly-12) and p21(Val-12) effects were fast and sustained, suggesting that in intact cells (i) the GDP/GTP exchange is faster for p21(Gly-12) compared to p21(Val-12) and (ii) inactivation of p21(Gly-12) is mediated by GAP-induced GTPase activity. T-type Ca2+ currents and K+ currents were unaffected by ras proteins.  相似文献   

19.
The p21ras superfamily, involved in diverse processes including cell growth and intracellular trafficking, possesses intrinsic GTPase activity and cycles between GTP-bound active and GDP-bound quiescent states. This intrinsic activity, which results in down-regulation, is accelerated by GTPase activating proteins (GAPs). Other proteins regulating the GDP/GTP cycle include exchange proteins and dissociation inhibitors. The p21s rho, rac, and cdc42Hs constitute a subfamily implicated in cytoskeletal organization. BCR and n-chimaerin are prototypes of a new GAP family for these p21s. To investigate proteins modulating GTP hydrolysis of the three p21s, we developed a novel overlay assay applicable to tissue extracts. Diverse GAPs with different specificities were identified in all rat tissues. Brain contained rac1 GAPs of 45, 50, 85, 100, and 150 kDa. The p50 and p150 GAPs also act on rhoA and cdc42Hs and are ubiquitous, while the p45-GAP, n-chimaerin, is brain- and testis-specific and acts preferentially on rac1; the p100 GAP acts on both rac1 and cdc42Hs and is brain-specific. A new class of p21-interacting proteins was also identified. This diversity, versatility, and tissue specificity of GAPs may be required for fine control of the down-regulation of GTP-bound p21s and the suggested specific downstream effects of individual GAPs, which could involve "cross-talk" between GAPs and p21s.  相似文献   

20.
Using radiation inactivation we determined that p21 ras proteins exhibit an oligomeric target size when assayed both structurally and functionally. Similar target sizes of p21 in ras-transformed cells and in purified preparations of the protein suggested that its structure is homo-oligomeric. p21 monomers were destroyed by radiation with the same target size as the GTP binding activity, indicating the occurrence of a tight association allowing energy transfer between the monomers. Irradiation in the presence of GTP, dithiothreitol, or EDTA did not change the target size. Normal (Gly12) and transforming (Lys12) forms of the protein exhibited similar target sizes. The homo-oligomeric structure suggests that p21 ras proteins do not conform to the structure of monomeric alpha subunits in classical G proteins (alpha beta gamma heterotrimers) and establishes similarities with other homo-oligomeric proteins (such as Escherichia coli CRP) which acquire the active conformation through subunit reorientation upon nucleotide binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号