首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High yields of thermostable α-amylase was produced by Bacillus licheniformis 44MB82-G, resistant to glucose catabolite repression, on the basis of inexpensive raw materials and glucose as a main carbon source. The optimal parameters for the α-amylase production were an agitation rate of 500 rpm, constant air-flow rate (1 vvm) and cultivation temperature 40°C. An enzyme activity of 4800–5000 U/ml culture medium was reached in 96–120 h. The α-amylase preparation had the following characteristics: α-amylase activity 55 000 U/ml, high thermostability (98% residual α-amylase activity after 10 min treatment at 90°C), protein content 88 mg/ml and dry substances 30%.  相似文献   

2.
Yorkstar wheat, grown in New York State, has a high percentage (10-11) of grains without embryos. The embryoless grains have viable aleurone layers and show no sign of injury. These grains are able to support α-amylase synthesis only in the presence of gibberellin A3 (GA3). In the absence of GA3 some protein synthesis occurs in embryoless grains during the early hours of soaking, indicating that such activity occurs prior to and independent of GA3 induction of α-amylase. The level of β-amylase on a dry weight basis is the same in embryoless and normal grains and decreases with time of soaking. In the presence of GA3, β-amylase decreases at a slower rate. Isoenzymes of α-amylase from GA3-treated embryoless and normal grains show quantitative as well as qualitative differences. Cycloheximide (60 μg/ml) completely inhibits the synthesis of α-amylase by embryoless grains. Of the RNA synthesis inhibitors, actinomycin D (60 μg/ml) was ineffective while 6-methylpurine (60 μg/ml) gave 65% inhibition without decreasing the number of isoenzymes.  相似文献   

3.
Germination of lettuce seeds was inhibited by 6-methoxy-2-benzoxazolinone (MBOA) at concentrations greater than 0.03 mmol/L. MBOA also inhibited the induction of α-amylase activity in the lettuce seeds at concentrations greater than 0.03 mmol/L. These two concentration–response curves for the germination and α-amylase indicate that the percentage of the germination was positively correlated with the activity of α-amylase in the seeds. Lettuce seeds germinated around 18 h after incubation and inhibition of α-amylase by MBOA occurred within 6 h after seed incubation. These results show that MBOA may inhibit the germination of lettuce seeds by inhibiting the induction of α-amylase activity.  相似文献   

4.
A strategy for optimizing the extracellular degradation and folding environment of Brevibacillus choshinensis has been used to enhance the extracellular production of recombinant α-amylase. First, a gene (bcp) encoding an extracellular protease and another encoding an extracellular chaperone (prsC) were identified in the genome of B. choshinensis HPD31-SP3. Then, the effect of extracellular protein degradation on recombinant α-amylase production was investigated by establishing a CRISPR/Cas9n system to knock out bcp. The effect of extracellular folding capacity was investigated separately by coexpressing extracellular chaperones genes from different sources (prsA, prsC, prsL, prsQ) in B. choshinensis. The final recombinant strain (BCPPSQ), which coexpressed prsQ in a genetic background lacking bcp, produced an extracellular α-amylase activity of 6940.9 U/ml during shake-flask cultivation. This was 2.1-fold greater than that of the original strain BCWPS (3367.9 U/ml). Cultivation of BCPPSQ in a 3-l fermenter produced an extracellular α-amylase activity of 17925.6 U/ml at 72 h, which was 7.6-fold greater than that of BCWPS (2358.1 U/ml). This strategy demonstrates its great potential in enhancing extracellular α-amylase production in B. choshinensis. What''s more, this study provides a strategic reference for improving the extracellular production of other recombinant proteins in B. choshinensis.  相似文献   

5.
Thermostable Amylolytic Enzymes from a New Clostridium Isolate   总被引:12,自引:9,他引:3       下载免费PDF全文
A new Clostridium strain was isolated on starch at 60°C. Starch, pullulan, maltotriose, and maltose induced the synthesis of α-amylase and pullulanase, while glucose, ribose, fructose, and lactose did not. The formation of the amylolytic enzymes was dependent on growth and occurred predominantly in the exponential phase. The enzymes were largely cell bound during growth of the organism with 0.5% starch, but an increase of the starch concentration in the growth medium was accompanied by the excretion of α-amylase and pullulanase into the culture broth; but also by a decrease of total activity. α-Amylase, pullulanase, and α-glucosidase were active in a broad temperature range (40 to 85°C) and displayed temperature optima for activity at 60 to 70°C. During incubation with starch under aerobic conditions at 75°C for 2 h, the activity of both enzymes decreased to only 90 or 80%. The apparent Km values of α-amylase, pullulanase, and α-glucosidase for their corresponding substrates, starch, pullulan, and maltose were 0.35 mg/ml, 0.63 mg/ml, and 25 mM, respectively.  相似文献   

6.
α-Amylase from mung beans (Vigna radiata) was immobilized on two different matrices, Amberlite MB 150 and chitosan beads. Maximum immobilization obtained was 72% and 69% in case of Amberlite and chitosan beads, respectively. The pH optima of soluble α-amylase were 5.6, whereas that for immobilized amylase on chitosan and Amberlite was 7.0. Soluble amylase and Amberlite immobilized amylase showed maximum activity at 65 °C, whereas chitosan immobilized amylase showed maximum activity at 75 °C. α-Amylase immobilized on Amberlite showed apparent Km of 2.77 mg/ml, whereas α-amylase immobilized on chitosan showed an apparent Km of 5 mg/ml. The Amberlite-amylase and chitosan-amylase showed a residual activity of 43% and 27%, respectively, after 10 uses. The loss of activity for free amylase after 100 days of storage at 4 °C was 70%, whereas that for Amberlite- and chitosan-amylases, under the same experimental conditions, the losses were 45% and 55%, respectively. The easy availability of mung bean α-amylase, the ease of its immobilization on low-cost matrices and good stability upon immobilization in the present study makes it a suitable product for further use in industrial applications.  相似文献   

7.
Crosslinked potato starch was prepared as an affinity adsorbent for bacterial α-amylase. To this end, reaction parameters for crosslinking in an ethanol/water solvent were investigated. The degree of crosslinking, and consequently the suitability of crosslinked starch as an adsorbent for α-amylase, changed by altering these parameters. An increase in the degree of crosslinking of the adsorbent caused lower affinity for bacterial α-amylase which resulted in an unfavourable decrease in adsorption capacity and a favourable decrease in the degradation of the adsorbent by the enzyme. 1 g of a suitable adsorbent for bacterial α-amylase, prepared with an epichlorohydrin/glucose monomer ratio of 0·65 (starch concentration 150 mg/ml, ethanol/water ratio 2·0, sodium hydroxide/epichlorohydrin ratio 1·0), can adsorb 9·8 mg of an α-amylase from B. licheniformis at 4°C in 20 h.The equilibrium constant between bound and unbound α-amylase is dependent on the temperature. An effective desorption was possible by a shift to higher temperatures. Degradation values smaller than 0·1% were measured after an incubation of 1 h at 70°C in a desorption buffer with 20% glycerol.It was concluded that coulombic interactions and hydrogen bonds are of no or little importance in enzyme adsorption. Van der Waals forces, which are responsible for the large temperature effect, are the main forces in the interaction between α-amylase and crosslinked starch.  相似文献   

8.

Background and Aims

α-Amylase in grass caryopses (seeds) is usually expressed upon commencement of germination and is rarely seen in dry, mature seeds. A heat-stable α-amylase activity was unexpectedly selected for expression in dry annual ryegrass (Lolium rigidum) seeds during targeted selection for low primary dormancy. The aim of this study was to characterize this constitutive activity biochemically and determine if its presence conferred insensitivity to the germination inhibitors abscisic acid and benzoxazolinone.

Methods

α-Amylase activity in developing, mature and germinating seeds from the selected (low-dormancy) and a field-collected (dormant) population was characterized by native activity PAGE. The response of seed germination and α-amylase activity to abscisic acid and benzoxazolinone was assessed. Using an alginate affinity matrix, α-amylase was purified from dry and germinating seeds for analysis of its enzymatic properties.

Key Results

The constitutive α-amylase activity appeared late during seed development and was mainly localized in the aleurone; in germinating seeds, this activity was responsive to both glucose and gibberellin. It migrated differently on native PAGE compared with the major activities in germinating seeds of the dormant population, but the enzymatic properties of α-amylase purified from the low-dormancy and dormant seeds were largely indistinguishable. Seed imbibition on benzoxazolinone had little effect on the low-dormancy seeds but greatly inhibited germination and α-amylase activity in the dormant population.

Conclusions

The constitutive α-amylase activity in annual ryegrass seeds selected for low dormancy is electrophoretically different from that in germinating seeds and its presence confers insensitivity to benzoxazolinone. The concurrent selection of low dormancy and constitutive α-amylase activity may help to enhance seedling establishment under competitive conditions.  相似文献   

9.
The specific measurement of α-amylase activity in crude plant extracts is difficult because of the presence of β-amylases which directly interfere with most assay methods. Methods compared in this study include heat treatment at 70°C for 20 min, HgCl2 treatment, and the use of the α-amylase specific substrate starch azure. In comparing alfalfa (Medicago sativa L.), soybeans (Glycine max [L.] Merr.), and malted barley (Hordeum vulgare L.), the starch azure assay was the only satisfactory method for all tissues. While β-amylase can liberate no color alone, over 10 International units per milliliter β-amylase activity has a stimulatory effect on the rate of color release. This stimulation becomes constant (about 4-fold) at β-amylase activities over 1,000 International units per milliliter. Two starch azure procedures were developed to eliminate β-amylase interference: (a) the dilution procedure, the serial dilution of samples until β-amylase levels are below levels that interfere; (b) the β-amylase saturation procedure, addition of exogenous β-amylase to increase endogenous β-amylase activity to saturating levels. Both procedures yield linear calibrations up to 0.3 International units per milliliter. These two procedures produced statistically identical results with most tissues, but not for all tissues. Differences between the two methods with some plant tissues was attributed to inaccuracy with the dilution procedure in tissues high in β-amylase activity or inhibitory effects of the commercial β-amylase. The β-amylase saturation procedure was found to be preferable with most species. The heat treatment was satisfactory only for malted barley, as α-amylases in alfalfa and soybeans are heat labile. Whereas HgCl2 proved to be a potent inhibitor of β-amylase activity at concentrations of 10 to 100 micromolar, these concentrations also partially inhibited α-amylase in barley malt. The reported α-amylase activities in crude enzyme extracts from a number of plant species are apparently the first specific measurements reported for any plant tissues other than germinating cereals.  相似文献   

10.
Beers EP  Duke SH 《Plant physiology》1988,87(4):799-802
Most of the activity of an α-amylase present in crude pea (Pisum sativum L. cv Laxton's Progress No. 9) leaf preparations cannot be found in isolated pea leaf protoplasts. The same extrachloroplastic α-amylase is present in pea stems, representing approximately 6% of total stem amylolytic activity and virtually all of the α-amylase activity. By a simple infiltration-extraction procedure, the majority (87%) of this α-amylase activity was recovered from the pea stem apoplast without significantly disrupting the symplastic component of the tissue. Only 3% of the β-amylase activity and less than 2% of other cellular marker enzymes were removed during infiltration-extraction.  相似文献   

11.
The presence of multiple forms of α-amylase in gibberellic acid-treated embryoless barley half-seeds was demonstrated by separation on diethylaminoethyl-Sephadex and isoelectric focusing polyacrylamide gel disc electrophoresis. Two major α-amylase fractions (A and B), each consisting of two to three isozyme components, were purified. α-Amylase fractions A and B were distinguishable in their reaction patterns. The optimal pH of fraction A α-amylase was found to reside in the acidic side (pH 5.0), as was determined by analyzing the reducing sugars formed as well as the paper chromatographic detection of reaction products. At neutral pH, 6.9, fraction A exhibited weak amylolytic activity in forming maltose. The α-amylase activity in fraction A was markedly stimulated by heat treatment (70 C/15 minutes). Fraction B, constituting a major part of amylases in the endosperm extract, was also found to be composed of α-amylase, as evidenced by the loss of enzyme activity upon allowing fractions A and B to stand at pH 3.3 for a prolonged period. The possible physiological function of the two different types of α-amylase in the carbohydrate breakdown of barley seeds is discussed.  相似文献   

12.
α-Amylase activity increased in attached cotyledons of germinated Vigna mungo seeds until the 5th day after imbibition and decreased thereafter, whereas in detached and incubated cotyledons the activity continuously increased and, at the 6th day, reached the value more than three times that of the maximum activity of attached cotyledons. Zymograms of the activities and Ouchterlony double immunodiffusion test on the activities of attached and detached cotyledons showed that the increase of activity in detached cotyledons was due to the identical enzyme as in attached tissues. α-Amylase contents, determined by single radial immunodiffusion method, changed in parallel with enzyme activity in both attached and detached cotyledons, which also suggested the de novo synthesis of α-amylase in V. mungo cotyledons.

The rate of incorporation of the label from [3H]leucine into α-amylase and the ratios of dpm in α-amylase/dpm in trichloroacetic acid-insoluble fraction did not show significant difference between attached and detached cotyledons. The results indicated that in attached cotyledons fluctuation of α-amylase activity was regulated by both synthesis and degradation of the enzyme, whereas in detached cotyledons α-amylase was synthesized and accumulated, because of low degrading activity during incubation.

  相似文献   

13.
Saeed M  Duke SH 《Plant physiology》1990,94(4):1813-1819
Pea (Pisum sativum L.) tissues with reduced chloroplast density (e.g. petals and stems) or function (i.e. senescent leaves and leaves darkened for prolonged periods) were surveyed to determine whether tissues with genetically or environmentally reduced chloroplast density and/or function also have significantly different amylolytic enzyme activities and/or isoform patterns than leaf tissues with totally competent chloroplasts. Native PAGE followed by electrophoretically blotting through a starch or β-limit dextrin containing gel and KI/I2 staining revealed that the primary amylases in leaves, stems, petals, and roots were the primarily vacuolar β-amylase (EC 3.2.1.2) and the primarily apoplastic α-amylase (EC 3.2.1.1). Among tissues of light grown pea plants, petals contained the highest levels of total amylolytic (primarily β-amylase) activity and considerably higher ratios of β- to α-amylase. In aerial tissues there was an inverse relationship between chlorophyll and starch concentration, and β-amylase activity. In sections of petals and stems there was a pronounced inverse relationship between chlorophyll concentration and the activity of α-amylase. Senescing leaves of pea, as determined by age, and protein and chlorophyll content, contained 3.8-fold (fresh weight basis) and 32-fold (protein basis) higher α-amylase activity than fully mature leaves. Leaves maintained in darkness for 12 days displayed a 14-fold (fresh weight basis) increase in α-amylase activity over those grown under continuous light. In senescence and prolonged darkness studies, the α-amylase that was greatly increased in activity was the primarily apoplastic α-amylase. These studies indicate that there is a pronounced inverse relationship between chloroplast function and levels of apoplastic α-amylase activity and in some cases an inverse relationship between chloroplast density and/or function and vacuolar β-amylase activity.  相似文献   

14.
Developmental patterns of α-amylase in Vigna radiata cotyledons during and following germination were quite different depending on the differences in the treatments of cotyledons during the imbibitional stage. When axis-detached cotyledons were imbibed in water with seed-coats attached, α-amylase activity did not increase and remained low. On the other hand, when the cotyledons were imbibed in water after seed-coat removal, the enzyme activity increased markedly. If the axis was attached to the cotyledons, α-amylase showed a marked development even under the former imbibition conditions. These changes in the enzyme activity were in parallel with those in the enzyme content, and the content, in turn, was dependent upon the availability of mRNA for α-amylase. We propose that the regulation of the development of α-amylase in cotyledons may involve some factor(s) inhibitory to accumulation of α-amylase mRNA, which is present in dry cotyledons and can be removed from cotyledons by leakage or by the presence of the axis.  相似文献   

15.
The effect of seed coat removal on the synthesis of α-amylase isoenzymes in wheat was investigated. The immature wheat endosperm-aleurone (seed coat and embryo detached) produced considerably less α-amylase activity than immature whole or de-embryonated wheat kernels, when incubated under identical conditions of 18.5 C and 99% humidity, in the presence or absence of gibberellic acid (GA3). The incubated endosperm-aleurone also exhibited unique α-amylase isoenzyme composition when compared to the isoenzyme compositions of incubated whole and de-embryonated immature and mature wheat kernels both in the presence or absence of GA3. Subsequent studies indicated that the seed coat may contain factor(s) required for normal α-amylase isoenzyme synthesis.  相似文献   

16.
Summary A rapid and efficient method the exploiting affinity of α-amylase for its substrate starch is described. α-amylase from Bacillus licheniformis was purified to homogeneity by ammonium sulphate precipitation and affinity chromatography with 230-fold purification. The α-amylase adsorption to various starches was examined in order to screen its ability for highest binding to starch. The α-amylase was bound to starch more tenaciously, hence various eluants like maltose, soluble starch and high salts could not elute the bound α-amylase. However, the bound α-amylase was instantly eluted using 2% (w/v) dextrin. The purified enzyme showed a single polypeptide on SDS-PAGE, with a molecular weight of 58 kD. Western blot analysis confirmed the specificity of antibody raised against purified α-amylase.  相似文献   

17.
Wilson AM 《Plant physiology》1971,48(5):541-546
Drying of seeds of Agropyron desertorum (Fisch. ex Link) Schult. did not result in breakdown of α-amylase nor impair the ability of seeds to resume its synthesis when moistened again. β-Amylase activity did not change during 5 days of germination at a water potential of 0 atmosphere nor during 40 days of incubation at −40 atmospheres. Seeds synthesized α-amylase at 0, −20, and −40 atmospheres, but not at −60 atmospheres. At 0 and −20 atmospheres, the log of α-amylase activity was linearly related to hastening of germination. But at −40 atmospheres, seeds synthesized α-amylase during a time when there was little hastening of germination. Thus, it appears that other biochemical reactions are less drought-tolerant than synthesis of α-amylase. It is concluded that inhibition of α-amylase synthesis is not a controlling factor in the germination of these seeds at low water potentials.  相似文献   

18.
The amylases of the second leaves of barley seedlings (Hordeum vulgare L. cv Betzes) were resolved into eight isozymes by isoelectric focusing, seven of which were β-amylase and the other, α-amylase. The α-amylase had the same isoelectric point as one of the gibberellin-induced α-amylase isozymes in the aleurone layer. This and other enzyme characteristics indicated that the leaf isozyme corresponded to the type A aleurone α-amylase (low pI group). Crossing experiments indicated that leaf and type A aleurone isozymes resulted from expression of the same genes.

In unwatered seedlings, leaf α-amylase increased as leaf water potential decreased and ABA increased. Water stress had no effect on β-amylase. α-Amylase occurred uniformly along the length of the leaf but β-amylase was concentrated in the basal half of the leaf. Cell fractionation studies indicated that none of the leaf α-amylase occurred inside chloroplasts.

Leaf radiolabeling experiments followed by extraction of α-amylase by affinity chromatography and immunoprecipitation showed that increase of α-amylase activity involved synthesis of the enzyme. However, water stress caused no major change in total protein synthesis. Hybridization of a radiolabeled α-amylase-related cDNA clone to size fractionated RNA showed that water-stressed leaves contained much more α-amylase mRNA than unstressed plants. The results of these and other studies indicate that regulation of gene expression may be a component in water-stress induced metabolic changes.

  相似文献   

19.
We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles.  相似文献   

20.
Despite extensive biochemical analyses, the biological function(s) of plant β-amylases remains unclear. The fact that β-amylases degrade starch in vitro suggests that they may play a role in starch metabolism in vivo. β-Amylases have also been suggested to prevent the accumulation of highly polymerized polysaccharides that might otherwise impede flux through phloem sieve pores. The identification and characterization of a mutant of Arabidopsis var. Columbia with greatly reduced levels of β-amylase activity is reported here. The reduced β-amylase 1 (ram1) mutation lies in the gene encoding the major form of β-amylase in Arabidopsis. Although the Arabidopsis genome contains nine known or putative β-amylase genes, the fact that the ram1 mutation results in almost complete loss of β-amylase activity in rosette leaves and inflorescences (stems) indicates that the gene affected by the ram1 mutation is responsible for most of the β-amylase activity present in these tissues. The leaves of ram1 plants accumulate wild-type levels of starch, soluble sugars, anthocyanin, and chlorophyll. Plants carrying the ram1 mutation also exhibit wild-type rates of phloem exudation and of overall growth. These results suggest that little to no β-amylase activity is required to maintain normal starch levels, rates of phloem exudation, and overall plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号