首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Molecular force measurements quantified the impact of polysialylation on the adhesive properties both of membrane-bound neural cell adhesion molecule (NCAM) and of other proteins on the same membrane. These results show quantitatively that NCAM polysialylation increases the range and magnitude of intermembrane repulsion. The repulsion is sufficient to overwhelm both homophilic NCAM and cadherin attraction at physiological ionic strength, and it abrogates the protein-mediated intermembrane adhesion. The steric repulsion is ionic strength dependent and decreases substantially at high monovalent salt concentrations with a concomitant increase in the intermembrane attraction. The magnitude of the repulsion also depends on the amount of polysialic acid (PSA) on the membranes, and the PSA-dependent attenuation of cadherin adhesion increases with increasing PSA-NCAM:cadherin ratios. These findings agree qualitatively with independent reports based on cell adhesion studies and reveal the likely molecular mechanism by which NCAM polysialylation regulates cell adhesion and intermembrane space.  相似文献   

3.
Polysialyltransferase-1 (PST; ST8Sia IV) is one of the alpha2, 8-polysialyltransferases responsible for the polysialylation of the neural cell adhesion molecule (NCAM). The presence of polysialic acid on NCAM has been shown to modulate cell-cell and cell-matrix interactions. We previously reported that the PST enzyme itself is modified by alpha2,8-linked polysialic acid chains in vivo. To understand the role of autopolysialylation in PST enzymatic activity, we employed a mutagenesis approach. We found that PST is modified by five Asn-linked oligosaccharides and that the vast majority of the polysialic acid is found on the oligosaccharide modifying Asn-74. In addition, the presence of the oligosaccharide on Asn-119 appeared to be required for folding of PST into an active enzyme. Co-expression of the PST Asn mutants with NCAM demonstrated that autopolysialylation is not required for PST polysialyltransferase activity. Notably, catalytically active, non-autopolysialylated PST does not polysialylate any endogenous COS-1 cell proteins, highlighting the protein specificity of polysialylation. Immunoblot analyses of NCAM polysialylation by polysialylated and non-autopolysialylated PST suggests that the NCAM is polysialylated to a higher degree by autopolysialylated PST. We conclude that autopolysialylation of PST is not required for, but does enhance, NCAM polysialylation.  相似文献   

4.
In this study we have examined how unnatural sialic acids can alter polysialic acid expression and influence the adhesive properties of the neural cell adhesion molecule (NCAM). Unnatural sialic acids are generated by metabolic conversion of synthetic N-acyl mannosamines and are typically incorporated into cell-surface glycoconjugates. However, N-butanoylmannosamine and N-pentanoylmannosamine are effective inhibitors of polysialic acid (PSA) synthesis in stably transfected HeLa cells expressing NCAM and the polysialyltransferase STX. These cells were used as substrates to examine the effect of inhibiting PSA synthesis on the development of neurons derived from the chick dorsal root ganglion. N-butanoylmannosamine blocked polysialylation of NCAM and significantly reduced neurite outgrowth comparable with enzymatic removal of PSA by endoneuraminidases. As a result, neurite outgrowth was similar to that observed for non-polysialylated NCAM. In contrast, previous studies have shown that N-propanoyl sialic acid (SiaProp), generated from N-propanoylmannosamine, is readily accepted by polysialyltransferases and permits the extension of poly(SiaProp) on NCAM. Despite being immunologically distinct, poly(SiaProp) can promote neurite outgrowth similarly to natural polysialic acid. Thus, subtle structural differences in PSA resulting from the incorporation of SiaProp residues do not alter the antiadhesive properties of polysialylated NCAM.  相似文献   

5.
Although generally accepted to play an important role in development, the precise functional significance of NCAM remains to be elucidated. Correlative and interventive studies suggest a role for polysialylated NCAM in neurite elaboration. In the adult NCAM polysialylation continues to be expressed in regions of the central nervous system which retain neuroplastic potential. During memory formation modulation of polysialylation on the synapse-enriched isoform of NCAM occurs in the hippocampus. The polysialylated neurons of this structure have been located at the border of the granule cell layer and hilar region of the dentate and their number increases dramatically during memory consolidation. The converse is also true for a profound decline in the basal number of polysialylated neurons occurs with ageing when neural plasticity becomes attenuated. In conclusion, it is suggested that NCAM polysialylation regulates ultrastructural plasticity associated with synaptic elaboration.Abbreviations PSA polysialic acid - NCAM neural cell adhesion molecule - SGL sub-granular cell layer - MF mossy fibers Special issue dedicated to Dr. Robert Balazs.  相似文献   

6.
A limited number of mammalian proteins are modified by polysialic acid, with the neural cell adhesion molecule (NCAM) being the most abundant of these. We hypothesize that polysialylation is a protein-specific glycosylation event and that an initial protein-protein interaction between polysialyltransferases and glycoprotein substrates mediates this specificity. To evaluate the regions of NCAM required for recognition and polysialylation by PST/ST8Sia IV and STX/ST8Sia II, a series of domain deletion proteins were generated, co-expressed with each enzyme, and their polysialylation analyzed. A protein consisting of the fifth immunoglobulin-like domain (Ig5), which contains the reported sites of polysialylation, and the first fibronectin type III repeat (FN1) was polysialylated by both enzymes, whereas a protein consisting of Ig5 alone was not polysialylated by either enzyme. This demonstrates that the Ig5 domain of NCAM and FN1 are sufficient for polysialylation, and suggests that the FN1 may constitute an enzyme recognition and docking site. Two other NCAM mutants, NCAM-6 (Ig1-5) and NCAM-7 (FN1-FN2), were weakly polysialylated by PST/ST8Sia IV, suggesting that a weaker enzyme recognition site may exist within the Ig domains, and that glycans in the FN region are polysialylated. Further analysis indicated that O-linked oligosaccharides in NCAM-7, and O-linked and N-linked glycans in full-length NCAM, are polysialylated when these proteins are co-expressed with the polysialyltransferases in COS-1 cells. Our data support a model in which the polysialyltransferases bind to the FN1 of NCAM to polymerize polysialic acid chains on appropriately presented glycans in adjacent regions.  相似文献   

7.
The presence of alpha2,8-linked polysialic acid on the neural cell adhesion molecule (NCAM) is known to modulate cell interactions during development and oncogenesis. Two enzymes, the alpha2,8-polysialyltransferases ST8Sia IV()/PST and ST8Sia II()/STX are responsible for the polysialylation of NCAM. We previously reported that both ST8Sia IV/PST and ST8Sia II/STX enzymes are themselves modified by alpha2,8-linked polysialic acid chains, a process called autopolysialylation. In the case of ST8Sia IV/PST, autopolysialylation is not required for enzymatic activity. However, whether the autopolysialylation of ST8Sia II/STX is required for its ability to polysialylate NCAM is unknown. To understand how autopolysialylation impacts ST8Sia II/STX enzymatic activity, we employed a mutagenesis approach. We found that ST8Sia II/STX is modified by six Asn-linked oligosaccharides and that polysialic acid is distributed among the oligosaccharides modifying Asn 89, 219, and 234. Coexpression of a nonautopolysialylated ST8Sia II/STX mutant with NCAM demonstrated that autopolysialylation is not required for ST8Sia II/STX polysialyltransferase activity. In addition, catalytically active, nonautopolysialylated ST8Sia II/STX does not polysialylate any endogenous COS-1 cell proteins, highlighting the protein specificity of polysialylation. Furthermore, immunoblot analysis of NCAM polysialylation by autopolysialylated and nonautopolysialylated ST8Sia II/STX suggests that the NCAM is polysialylated to a higher degree by autopolysialylated ST8Sia II/STX. Therefore, we conclude that autopolysialylation of ST8Sia II/STX, like that of ST8Sia IV/PST, is not required for, but does enhance, NCAM polysialylation.  相似文献   

8.
The polysialylation of neural cell adhesion molecule (NCAM) evolved in vertebrates to carry out biological functions related to changes in cell position and morphology. Many of these effects involve the attenuation of cell interactions that are not mediated through NCAM's own adhesion properties. A proposed mechanism for this global effect on cell interaction is the steric inhibition of membrane-membrane apposition based solely on polysialic acid (PSA) biophysical properties. However, it remains possible that the intrinsic binding or signaling properties of the NCAM polypeptide are also involved. To help resolve this issue, this study uses a quantitative cell detachment assay together with cells engineered to display different adhesion receptors together with a variety of polysialylated NCAM polypeptide isoforms and functional domain deletion mutations. The results obtained indicate that regulation by PSA occurs with adhesion receptors as diverse as an IgCAM, a cadherin and an integrin, and does not require NCAM functional domains other than those minimally required for polysialylation. These findings are most consistent with the cell apposition mechanism for PSA action, as this model predicts that the inhibitory effects of PSA-NCAM on cell adhesion should be independent of the nature of the adhesion system and of any intrinsic binding or signaling properties of the NCAM polypeptide itself.  相似文献   

9.
Polysialic acid represents a unique posttranslational modification of the neural cell adhesion molecule (NCAM). It is built as a homopolymer of up to 150 molecules of alpha 2-8-linked sialic acids on N-glycans of the fifth immunoglobulin-like domain of NCAM. Besides its role in cell migration and axonal growth during development, polysialic acids are closely related to tumor malignancy as they are linked to the malignant potential of several tumors, such as undifferentiated neuroblastoma. Polysialic acid expression is significantly more frequent in high-grade tumors than in low-grade tumors. It is synthesized in the Golgi apparatus by the activity of two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV. Interestingly, polysialylation of tumors is not equally synthesized by both polysialyltransferases. It has been shown that especially the ST8SiaII gene is not expressed in some normal tissue, but is strongly expressed in tumor tissue. Here we summarize some knowledge on the role of polysialic acid in cell migration and tumor progression and present novel evidence that interfering with polysialylation using unnatural sialic acid precursors decreases the migration of neuroblastoma cells.  相似文献   

10.
Dynamic regulation of glycosylation of the neural cell adhesion molecule (NCAM) by an unusual large negatively charged polysialic acid (PSA) is the major prerequisite for correct formation of brain circuitries during development and for normal synaptic plasticity, learning and memory in the adult. Traditionally, PSA is viewed as a de-adhesive highly hydrated molecule, which interferes with cell adhesion and promotes cellular/synaptic dynamics by steric hindrance. Analysis of synaptic functions of PSA-NCAM highlighted additional features of this molecule. First, PSA promotes interaction of NCAM with heparan sulfate proteoglycans and thus stimulates synaptogenesis. Second, PSA-NCAM modulates glutamate receptors: it restrains activity of extrasynaptic GluN2B-containing NMDA receptors and facilitates activity of a subset of AMPA receptors. Perturbation in polysialylation and/or NCAM expression in mouse models recapitulates many symptoms of human brain disorders such as schizophrenia, depression, anxiety and Alzheimer's disease.  相似文献   

11.
Polysialic acid, a homopolymer of alpha2,8-linked sialic acid expressed on the neural cell adhesion molecule (NCAM), is thought to play critical roles in neural development. Two highly homologous polysialyltransferases, ST8Sia II and ST8Sia IV, which belong to the sialyltransferase gene family, synthesize polysialic acid on NCAM. By contrast, ST8Sia III, which is moderately homologous to ST8Sia II and ST8Sia IV, adds oligosialic acid to itself but very inefficiently to NCAM. Here, we report domains of polysialyltransferases required for NCAM recognition and polysialylation by generating chimeric enzymes between ST8Sia IV and ST8Sia III or ST8Sia II. We first determined the catalytic domain of ST8Sia IV by deletion mutants. To identify domains responsible for NCAM polysialylation, different segments of the ST8Sia IV catalytic domain, identified by the deletion experiments, were replaced with corresponding segments of ST8Sia II and ST8Sia III. We found that larger polysialic acid was formed on the enzymes themselves (autopolysialylation) when chimeric enzymes contained the carboxyl-terminal region of ST8Sia IV. However, chimeric enzymes that contain only the carboxyl-terminal segment of ST8Sia IV and the amino-terminal segment of ST8Sia III showed very weak activity toward NCAM, even though they had strong activity in polysialylating themselves. In fact, chimeric enzymes containing the amino-terminal portion of ST8Sia IV fused to downstream sequences of ST8Sia III inhibited NCAM polysialylation in vitro, although they did not polysialylate NCAM. These results suggest that in polysialyltransferases the NCAM recognition domain is distinct from the polysialylation domain and that some chimeric enzymes may act as a dominant negative enzyme for NCAM polysialylation.  相似文献   

12.
Polysialylated neural cell adhesion molecule (NCAM) is thought to play a critical role in neural development. Polysialylation of NCAM was shown to be achieved by two alpha2,8-polysialyltransferases, ST8Sia IV (PST) and ST8Sia II (STX), which are moderately related to another alpha2,8-sialyltransferase, ST8Sia III. Here we describe that all three alpha2,8-sialyltransferases can utilize oligosaccharides as acceptors but differ in the efficiency of adding polysialic acid on NCAM. First, we found that ST8Sia III can form polysialic acid on the enzyme itself (autopolysialylation) but not on NCAM. These discoveries prompted us to determine if ST8Sia IV and ST8Sia II share the property of ST8Sia III in utilizing low molecular weight oligosaccharides as acceptors. By using a newly established method, we found that ST8Sia IV, ST8Sia II, and ST8Sia III all add oligosialic and polysialic acid on various sialylated N-acetyllactosaminyl oligosaccharides, including NCAM N-glycans, fetuin N-glycans, synthetic sialylated N-acetyllactosamines, and on alpha(2)-HS-glycoprotein. Our results also showed that monosialyl and disialyl N-acetyllactosamines can serve equally as an acceptor, suggesting that no initial addition of alpha2,8-sialic acid is necessary for the action of polysialyltransferases. Polysialylation of NCAM by ST8Sia IV and ST8Sia II is much more efficient than polysialylation of N-glycans isolated from NCAM. Moreover, ST8Sia IV and ST8Sia II catalyze polysialylation of NCAM much more efficiently than ST8Sia III. These results suggest that no specific acceptor recognition is involved in polysialylation of low molecular weight sialylated oligosaccharides, whereas the enzymes exhibit pronounced acceptor specificities if glycoproteins are used as acceptors.  相似文献   

13.
The glycan polysialic acid is well-known as a unique posttranslational modification of the neural cell adhesion molecule NCAM. Despite remarkable acceptor specificity, however, a few other proteins can be targets of polysialylation. Here, we recapitulate the biosynthesis of polysialic acid by the two polysialyltransferases ST8SIA2 and ST8SIA4 and highlight the increasing evidence that variation in the human ST8SIA2 gene is linked to schizophrenia and possibly other neuropsychiatric disorders. Moreover, we summarize the knowledge on the role of NCAM polysialylation in brain development gained by the analysis of NCAM- and polysialyltransferase-deficient mouse models. The last part of this review is focused on recent advances in identifying SynCAM 1 and neuropilin-2 as novel acceptors of polysialic acid in NG2 cells of the perinatal brain and in dendritic cells of the immune system, respectively.  相似文献   

14.
Sialic acid (Sia) is expressed as terminal sugar in many glycoconjugates and plays an important role during development and regeneration. Addition of homopolymers of Sia (polysialic acid; polySia/PSA) is a unique and highly regulated post-translational modification of the neural cell adhesion molecule (NCAM). The presence of polySia affects NCAM-dependent cell adhesion and plays an important role during brain development, neural regeneration, and plastic processes including learning and memory. PolySia-NCAM is expressed on several neuroendocrine tumors of high malignancy and correlates with poor prognosis. Two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV, catalyze the biosynthesis of polySia. This review summarizes recent knowledge on Sia biosynthesis and the correlation between Sia biosynthesis and polysialylation of NCAM and report on approaches to modify the degree of polySia on NCAM in vitro and in vivo. First, we describe the inhibition of polysialylation of NCAM in ST8SiaII-expressing cells using synthetic Sia precursors. Second, we demonstrate that the key enzyme of the Sia biosynthesis (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase) regulates and limits the synthesis of polySia by controlling the cellular Sia concentration.  相似文献   

15.
Polysialic acid (PSA) is a unique linear homopolymer of alpha2,8-linked sialic acid that has been identified as a posttranslational modification on only five mammalian proteins. Studied predominantly on neural cell adhesion molecule (NCAM) during development of the vertebrate nervous system, PSA modulates cell interactions mediated by NCAM and other adhesion molecules. An isoform of NCAM (CD56) on natural killer (NK) cells is the only protein known to be polysialylated in cells of the immune system, yet the function of PSA in NK cells remains unclear. We show here that neuropilin-2 (NRP-2), a receptor for the semaphorin and vascular endothelial growth factor families in neurons and endothelial cells, respectively, is expressed on the surface of human dendritic cells and is polysialylated. Expression of NRP-2 is up-regulated during dendritic cell maturation, coincident with increased expression of ST8Sia IV, one of the key enzymes of PSA biosynthesis, and with the appearance of PSA on the cell surface. PSA on NRP-2 is resistant to digestion with peptide N-glycosidase F but is sensitive to release under alkaline conditions, suggesting that PSA chains are added to O-linked glycans of NRP-2. Removal of polysialic acid from the surface of dendritic cells or binding of NRP-2 with specific IgG promoted dendritic cell-induced activation and proliferation of T lymphocytes. Thus, this newly recognized polysialylated protein on the surface of dendritic cells influences dendritic cell-T lymphocyte interactions through one or more of its distinct extracellular domains.  相似文献   

16.
Polysialic acid (polySia) forms linear chains which are usually attached to the external surface of the plasma membrane mainly through the Neural Cell Adhesion Molecule (NCAM) protein. It is exposed on neural cells, several types of cancer cells, dendritic cells, and egg and sperm cells. There are several lipid raft-related phenomena in which polySia is involved; however the mechanisms of polySia action as well as determinants of its localization in lipid raft microdomains are still unknown, although the majority of NCAM molecules in the liquid-ordered raft membrane fractions of neural cells appear to be polysialylated. Here we investigate the affinity of polySia (both soluble and NCAM-dependent plasma membrane-bound) for liquid-ordered- and liquid-disordered regions of lipid vesicle and neuroblastoma cell membranes. Our studies indicate that polySia chains have a higher affinity for ordered regions of membranes as determined by the dissociation constant values for polySia-lipid bilayer complex, the fluorescence intensity of polySia bound to giant vesicles, the polySia-to-membrane FRET signal at the plasma membrane of live cells, and the decrease of the FRET signals after Endo-N treatment of the cells. These results suggest that polysialylation may be one of the determinants of protein association with liquid-ordered membrane lipid raft domains.  相似文献   

17.
Neural cell adhesion molecules (NCAMs) play critical roles during development of the nervous system. The aim of this study is to investigate the possible effect of ethanol exposure on the pattern of expression and sialylation of NCAM isoforms during postnatal rat brain development because alterations in NCAM content and distribution have been associated with defects in cell migration, synapse formation, and memory consolidation, and deficits in these processes have been observed after in utero alcohol exposure. The expression of NCAM isoforms in the developing cerebral cortex of pups from control and alcohol-fed mothers was assessed by western blotting, ribonuclease protection assay, and immunocytochemistry. The highly sialylated form of NCAM [polysialic acid (PSA)-NCAM] is mainly expressed during the neonatal period and then is down-regulated in parallel with the appearance of NCAM 180 and NCAM 140. Ethanol exposure increases PSA-NCAM levels during the neonatal period, delays the loss of PSA-NCAM, decreases the amount of NCAM 180 and NCAM 140 isoforms, and reduces sialyltransferase activity during postnatal brain development. Neuraminidase treatment of ethanol-exposed neonatal brains leads to more intense band degradation products, suggesting a higher content of NCAM polypeptides carrying PSA in these samples. However, NCAM mRNA levels are not changed by ethanol. Immunocytochemical analysis demonstrates that ethanol triggers an increase in PSA-NCAM immunolabeling in the cytoplasm of astroglial cells, accompanied by a decrease in immunogold particles over the plasma membrane. These findings indicate that ethanol exposure during brain development alters the pattern of NCAM expression and suggest that modification of NCAM could affect neuronal-glial interactions that might contribute to the brain defects observed after in utero alcohol exposure.  相似文献   

18.
Polysialic acid (PSA) is a dynamically regulated posttranslational modification of the neural cell adhesion molecule (NCAM), which modulates NCAM binding functions. PSA biosynthesis is catalyzed by two polysialyltransferases, ST8SiaII and ST8SiaIV. The catalytic mechanisms of these enzymes are unknown. In Chinese hamster ovary cells, ST8SiaIV is responsible for PSA expression. In the complementation group 2A10, the ST8SiaIV gene is disrupted. Investigating the molecular defects in this complementation group, seven clones with missense mutations in ST8SiaIV were found. Mutations cause replacement of amino acids that are highly conserved in alpha2,8-sialyltransferases. To verify the physiological relevance of identified mutations, identical amino acid substitutions were introduced into epitope-tagged variants of hamster ST8SiaIV and murine ST8SiaII and recombinant proteins were tested in vivo and in vitro. None of these constructs reconstituted PSA synthesis in 2A10 cells, although the proteins were expressed and with the exception of the cysteine variants ST8SiaIV-C356F and ST8SiaII-C371F correctly targeted to the Golgi apparatus. Interestingly, two mutations (ST8SiaIV-R277G and -M333V and the corresponding mutants ST8SiaII-R292G and -M348V) could be partially rescued if tested in vitro. Although these mutants were negative for autopolysialylation, partial reconstitution of both auto- and NCAM polysialylation was achieved in the presence of NCAM. The data presented in this study suggest a functional link between auto- and NCAM polysialylation.  相似文献   

19.
Elevated osmolality and pCO(2) have been shown to alter sialylation in a protein-specific manner. In Chinese hamster ovary (CHO)MT2-l-8 cells, tPA sialylation changed only slightly from 40 to 250 mm Hg pCO(2), whereas neural cell adhesion molecule polysialic acid (NCAM PSA) content decreased by up to 70% at 250 mm Hg pCO(2), pH 7.2. NCAM PSA content also decreased with increasing NaCl or NH(4)Cl concentration. This suggests that PSA content is a sensitive indicator of conditions that may alter glycosylation. Amino acids and their derivatives have been used to protect hybridoma and CHO cell growth under hyperosmotic stress. We examined the impact of osmoprotectants on NCAM PSA content in CHO MT2-1-8 cells under hyperosmolality (up to 545 mOsm/kg) and at 195 and 250 mm Hg pCO(2). NCAM PSA content at 545 mOsm/kg was at least two-fold greater in the presence of glycine betaine or L-proline compared to that without osmoprotectant. Surprisingly, in the presence of 20 mM glycine betaine, PSA levels were 50-60% of the control level for osmolalities ranging from 320 to 545 mOsm/kg. Thus, glycine betaine inhibits NCAM polysialylation at osmolalities below 435 mOsm/kg and is beneficial at higher osmolalities. In contrast to glycine betaine, L-proline increased PSA content by 25-120% relative to the unprotected culture at < or =545 mOsm/kg. The decrease in NCAM PSA levels of CHO MT2-1-8 cells cultured at 195 mm Hg pCO(2)-435 mOsm/kg was not mitigated by the presence of 25 mM glycine betaine, glycine, or L-threonine, even though all of these compounds enhanced cell growth. At 250 mm Hg pCO(2), all osmoprotectants tested (20 mM L-threonine, L-proline, glycine, or glycine betaine) increased NCAM polysialylation, with 20 mM glycine betaine restoring NCAM PSA to near control levels. Thus, osmoprotectants may (partially) offset changes in glycosylation, as well as the inhibition of growth, in cells under environmental stress. Supernatant beta-galactosidase levels, which increase upon alkalization of acidic organelles, did not differ significantly under elevated pCO(2) and hyperosmolality from that at control conditions.  相似文献   

20.
Poly-alpha-2,8-sialic acid (polysialic acid) is a post-translational modification of the neural cell adhesion molecule (NCAM) and an important regulator of neuronal cell-cell interactions. The synthesis of polysialic acid depends on the two polysialyltransferases ST8SiaII and ST8SiaIV. Understanding the catalytic mechanisms of the polysialyltransferases is critical toward the aim of influencing physiological and pathophysiological functions mediated by polysialic acid. We recently demonstrated that polysialyltransferases are bifunctional enzymes exhibiting auto- and NCAM polysialylation activity. Autopolysialylation occurs on N-glycans of the enzymes, and glycosylation variants lacking sialic acid and galactose were found to be inactive for both auto- and NCAM polysialylation. In the present study, we have analyzed the number and functional importance of N-linked oligosaccharides present on polysialyltransferases. We demonstrate that autopolysialylation depends on specific N-glycans attached to Asn(74) in ST8SiaIV and Asn(89) and Asn(219) in ST8SiaII. Deletion of polysialic acid acceptor sites by site-directed mutagenesis rendered the polysialyltransferases inactive in vitro and in vivo. The inactivity of autopolysialylation-negative polysialyltransferases in vivo was not caused by the absence or default targeting of the enzymes. The data presented in this study clearly show that active polysialyltransferases are competent to perform autopolysialylation and provide strong evidence for a tight functional link between the two catalytic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号