首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the five most important global biodiversity hotspots, the Neotropical Atlantic forest supports a diverse community of birds that nest in tree cavities. Cavity‐nesting birds may be particularly sensitive to forestry and agricultural practices that remove potential nest trees; however, there have been few efforts to determine what constitutes a potential nest tree in Neotropical forests. We aimed to determine the characteristics of trees and cavities used in nesting by excavators (species that excavate their own nest cavity) and secondary cavity‐nesters (species that rely on existing cavities), and to identify the characteristics of trees most likely to contain suitable cavities in the Atlantic forest of Argentina. We used univariate analyses and conditional logistic regression models to compare characteristics of nest trees paired with unused trees found over three breeding seasons (2006–2008). Excavators selected dead or unhealthy trees. Secondary cavity‐nesters primarily selected cavities that were deep and high on the tree, using live and dead cavity‐bearing trees in proportion to their availability. Nonexcavated cavities suitable for birds occurred primarily in live trees. They were most likely to develop in large‐diameter trees, especially grapia Apuleia leiocarpa and trees in co‐dominant or suppressed crown classes. To conserve cavity‐nesting birds of the Atlantic forest, we recommend a combination of policies, economic assistance, environmental education, and technical support for forest managers and small‐scale farmers, to maintain large healthy and unhealthy trees in commercial logging operations and on farms.  相似文献   

2.
Covering approximately three million km(2), the savannas, the second largest major plant formation in the American tropics, are gaining increasing importance for land planning and occupational strategies. There has been much recent research on the floristic and ecological characteristics of these herbaceous ecosystems, resulting in considerable progress in the understanding of their complex ecological interrelationships. Hitherto little-known savanna "islands" within the Amazon region are being intensively studied, offering interesting information on their origin and dynamic relationships with the surrounding forests. Important gaps remain to be filled, however, before a critical evaluation of the great variety of neotropical savanna ecosystems is achieved and the preservation of at least some of these unique plant formations is assured.  相似文献   

3.
Despite the well‐documented impacts of consumers on seed abundance the link between seed predation and plant population dynamics remains poorly understood because experimental studies linking patterns of predation with seedling establishment are rare. We used experimental manipulations with six woody plant species to elucidate the effects of seed predator type, habitat, and plant species identity on rates of seed predation and seedling recruitment in the Neotropical savannas known as the Cerrado. We found that seed predation rates are consistently high across a diversity of local habitat types, with important inter‐habitat variation in seed predation for three of the six species used in our experiments. We also found that seed predation has a clear demographic signal – experimentally excluding predators resulted in higher rates of seedling establishment over the course of two seasons. Because the intensity of seed predation varied between species and habitats, it may play a role in structuring local patterns of plant abundance and community composition. Finally, our results lend support to the recent hypothesis that herbivores have major and underappreciated impacts in Neotropical savannas, and that top–down factors can influence the demography of plants in this extensive and biodiversity‐rich biome in previously unexplored ways.  相似文献   

4.
The failure of seeds to arrive at all suitable sites (seed limitation) greatly affects plant distribution and abundance. In contrast to tropical forests, the degree of seed limitation in Neotropical savannas is unclear because empirical studies at the community level are scarce. We estimated seed limitation of 23 woody species from annual seed rain measurements along a tree density gradient in the savannas of Central Brazil. These savannas differ in tree density and canopy cover, from closed to open savannas, and are located along shallow topographic gradients. We also studied post-dispersal seed predation and removal of 17 representative woody species, and seed viability loss over time of 12 common woody species under dry-storage conditions. Annual seed rain was lower in open (410 seeds/m2) than in closed savannas (773 seeds/m2). Average seed limitation across woody species was higher than 80% along the tree density gradient. More than 60% of seeds of the studied woody species were predated or removed within 30–45 days in all savannah types. Seeds of most common woody species (66%) lost their viability in less than 12 months of dry storage. This study shows that Neotropical savannah woody plants are strongly seed-limited because of low and poor distribution of seeds among sites, post-dispersal seed removal, and short seed longevity. The high seed limitation of tree species in Neotropical savannas, particularly in open savannas, also may contribute to maintain their relatively low tree densities and help to explain the spatial variation of tree abundance along topographic gradients.  相似文献   

5.
6.
Community Organization Among Neotropical Nectar-Feeding Birds   总被引:5,自引:0,他引:5  
Assemblages of neotropical hummingbirds are organized accordingto parameters of available resources and morphological-behavioralattributes of particular hummingbird species. We distinguishfive types of flowers relative to hummingbird foraging, andwe define six community roles for hummingbirds in exploitationof various flower types. These roles are: high-reward trapliners,which visit but do not defend nectar-rich flowers with longcorollas; territorialists, which defend dense clumps of somewhatshorter flowers; lowreward trapliners, which forage among avariety of dispersed or nectar-poor flowers; territory-parasitesof two types (large marauders and small filchers); and generalists,which follow shifting foraging patterns among various resources.Simple communities on islands usually contain one species oflow-reward trapliner or generalist and one territorial species,and sometimes support one high-reward trapliner; often thesespecies are sexuallydimorphic. More complex mainland communitiessupport varying numbers of species in different roles, dependingon the relative importance and constancy of different flowertypes. High-reward trapliners are particularly important inforest under-stories, while forest canopies and open habitatssupport large numbers of shorter-billed, mobile birds fillingthe other five roles. We conclude by pointing out the many parallelsthat exist with other consumer groups.  相似文献   

7.
Intraspecific trait variability plays a fundamental role in community structure and dynamics; however, few studies have evaluated its relative importance to the overall response of communities to environmental pressures. Since fire is considered a key factor in Neotropical savannas, we investigated to what extent the functional effects of fire in a Brazilian savanna occurs via intra- or interspecific trait variability. We sampled 12 traits in communities subjected to three fire regimes in the last 12 years: annual, biennial, and protected. To evaluate fire’s relative effects, we fitted a general linear mixed models with species as random and fire as fixed factors, using: (1) all species in the communities (i.e., considering intra- and interspecific variabilities); (2) 18 species common to all fire regimes (i.e., intraspecific variability only); and (3) all species with their overall average trait values (i.e., interspecific variability only). We assessed the relative role of intra- or interspecific variability by comparing the significance of each trait in the three analyses. We also compared the within and between fire variabilities with a variance component analysis. Five traits presented larger intraspecific than interspecific variability, and the main effect of fire occurred at the intraspecific level. These results confirm that it is important to consider intraspecific variability to fully understand fire-prone communities. Moreover, trait variability was larger within than among fire regimes. Thus, fire may act more as an external filter, preventing some of the species from the regional pool from colonizing the cerrado, than as an internal factor structuring the already filtered cerrado communities.  相似文献   

8.
Aim This paper evaluates a method of combining data from GPS ground survey with classifications of medium spatial resolution LANDSAT imagery to distinguish variations within Neotropical savannas and to characterize the boundaries between savanna areas and the associated gallery forests, seasonally dry forests and wetland communities. Location Rio Bravo Conservation Area, Orange Walk District, Belize, Central America. Methods Dry season LANDSAT data for 10 April 1993 and 9 March 2001 covering a conservation area of 240,000 acres (97,459 ha), were rectified to sub‐pixel accuracy using ground control points positioned by GPS ground survey. The 1993 image was used to assess the accuracy with which the boundaries between the savanna matrix and gallery forests, high forests, wetlands and water bodies could be discriminated. The image was classified by a maximum likelihood (ML) classifier and the shapes and areas of forest and wetland classes were compared with an interpretation of these land cover types from 1 : 24,000 aerial photography, mapped at 1 : 50,000 scale in 1993. The 2001 image was used to assess whether different subtypes of savanna could be distinguished from LANDSAT data. This required the creation of a reference (‘ground truth’) data set for testing classifications of the image. One hundred and sixty sample patches (650 ha, distributed over an area of 7000 ha) of ten sub‐types of savanna vegetation and associates identified using a physiognomic classification scheme, were delineated on the ground by GPS and divided into two subsets for training and testing. Continuous classifications of LANDSAT data covering the savannas were developed that estimated potential contributions from up to five sub‐types of land cover (grassland, wetland, pine woodland, gallery forest and palmetto). The accuracy of each classification was assessed by comparison against ground data. An ML classification was also produced for the 2001 image using the same areas for training. This allowed a comparison of the relative accuracy of both continuous and Boolean ML methods for classifying savanna areas. Results The boundary between savannas and evergreen forests, gallery forests and open water in the study region could be delineated by the ML classifier to within 2 pixels (60 m) using LANDSAT imagery. However, the constituent sub‐types within the savanna were poorly discriminated. Whilst the shape and extent of closed canopy forest, gallery forest, wetlands and water bodies agreed closely with the distributions interpreted from aerial photography, classes such as ‘open pine savanna’ or ‘grassland’ were only 45–65% accurate when tested against ground data. A continuous classification, estimating the proportions of three savanna vegetation subtypes (grassland, marshland and woodland) present in each pixel, correctly classified more of the ground data for these cover types than the comparable ML result. Proportional mixtures of the land cover estimated by the continuous classifier also compared realistically with the vegetation formations observed along ground transects. Main conclusions By using GPS, a ground survey of vegetation cover was accurately matched to remotely sensed imagery and the accuracy of delineating boundaries and classifying areas of savanna was assessed directly. This showed that ML classification techniques can reliably delineate the boundaries of savannas, but continuous classifiers more accurately and realistically represent the distribution of the subtypes comprising savanna land cover. By combining these ground survey and image classification methods, medium spatial resolution satellite sensor data can provide an affordable means for land managers to assess the nature, extent and distribution of savanna formations. Over time, using the archives of LANDSAT (and SPOT) data together with marker sites surveyed in the field, quantitative changes in the extents and boundaries of savannas in response to both natural (e.g. fire, hurricane and drought) and anthropogenic (e.g. cutting and disturbance) factors can be assessed.  相似文献   

9.

Background

The Neotropical avifauna is more diverse than that of any other biogeographic region, but our understanding of patterns of regional divergence is limited. Critical examination of this issue is currently constrained by the limited genetic information available. This study begins to address this gap by assembling a library of mitochondrial COI sequences, or DNA barcodes, for Argentinian birds and comparing their patterns of genetic diversity to those of North American birds.

Methodology and Principal Findings

Five hundred Argentinian species were examined, making this the first major examination of DNA barcodes for South American birds. Our results indicate that most southern Neotropical bird species show deep sequence divergence from their nearest-neighbour, corroborating that the high diversity of this fauna is not based on an elevated incidence of young species radiations. Although species ages appear similar in temperate North and South American avifaunas, patterns of regional divergence are more complex in the Neotropics, suggesting that the high diversity of the Neotropical avifauna has been fueled by greater opportunities for regional divergence. Deep genetic splits were observed in at least 21 species, though distribution patterns of these lineages were variable. The lack of shared polymorphisms in species, even in species with less than 0.5M years of reproductive isolation, further suggests that selective sweeps could regularly excise ancestral mitochondrial polymorphisms.

Conclusions

These findings confirm the efficacy of species delimitation in birds via DNA barcodes, even when tested on a global scale. Further, they demonstrate how large libraries of a standardized gene region provide insight into evolutionary processes.  相似文献   

10.
11.
Most studies comparing biodiversity between natural and human-modified landscapes focus on patterns in species occurrence or abundance, but do not consider how different habitat types meet species' breeding requirements. Organisms that use or nest in tree cavities may be especially threatened by habitat conversion due to the loss of their nesting sites. Although cavity-nesting bird diversity is highest in the tropics, little is known about how tropical birds use cavities, how agriculture affects their reproductive biology, and how effective nest boxes could be as a conservation strategy in tropical agriculture. Here, we explored how habitat conversion from tropical forests to pasture affects the abundance, nesting habitat availability, and nest success of cavity-nesting birds in Northwest Ecuador. We conducted bird surveys and measured natural cavity availability and use in forest and agriculture. We also added artificial nest boxes to forest and agriculture to see whether cavity limitation in agriculture would elicit higher use of artificial nest boxes. We found evidence of cavity limitation in agriculture—there were many more natural cavities in forest than in agriculture, as well as more avian use of nest boxes placed in agriculture as compared to forest. Our results suggest that it is important to retain remnant trees in tropical agriculture to provide critical nesting habitat for birds. In addition, adding nest boxes to tropical agricultural systems could be a good conservation strategy for certain species, including insectivores that could provide pest-control services to farmers. Abstract in Spanish is available with online material.  相似文献   

12.
13.
We evaluated the utility of stable‐hydrogen isotope ratios in tropical bird tissues for detecting altitudinal migration events. Our results identified two of five species as altitudinal migrants in Nicaragua. This approach may circumvent the current limitations of mark–recapture techniques and enhance our ability to study this poorly characterized behavior.  相似文献   

14.
Distress calls are loud, harsh calls given by some species of birds when they are captured by a predator or handled by humans. We recorded the frequency of distress calls and struggling behavior in 40 species of birds captured in mist nets during the dry season in a Costa Rica cloud forest. We tested the following hypotheses proposed to explain the function of distress calls: (1) calling for help from kin or reciprocal altruists; (2) warning kin; (3) eliciting mobbing behavior; (4) startling the predator; and (5) distracting the predator through attraction of additional predators. Our results did not support the calling‐for‐help, warning kin, or mobbing hypotheses. Indeed, genera that regularly occurred with kin or in flocks were not more likely to call than non‐flocking genera. There was no relationship between calling frequency and struggling behavior as predicted by the predator startle hypothesis. Genera of larger birds tended to call more than smaller birds, providing some support for both the predator distraction hypothesis and predator startle hypotheses. Calls of higher amplitude may be more effective in startling the predator. Distress calls of larger birds may also travel greater distances than those of smaller birds, supporting the predator manipulation hypothesis, but this requires further testing.  相似文献   

15.
16.
1. Generalist herbivores feed on a wide and diverse set of species, but fine‐scale foraging patterns may be affected by the interplay between the quality, quantity and spatial distribution of host plants. 2. The foraging patterns of a prevalent Neotropical herbivore, the leaf‐cutter ant Atta laevigata, in the Brazilian Cerrado savannas were examined in order to determine if patterns observed are in concert with central‐place foraging predictions. 3. The results showed that A. laevigata acts as a polyphagous but highly selective herbivore, with ant attacks often resulting in partial defoliation of less‐preferred species and full defoliation of preferred ones. It was found, for the first time, that there is a strong and positive relationship between the relative attack frequency on plants from preferred species and foraging distance to the nest. This suggests a balance between the quality of plant resources harvested and costs involved in their transportation. It was also observed that colonies focused their harvest on preferred species in months with low availability of young leaves. Consequently, high herbivory rate was more frequent in plants attacked far away from the nest and in dry months. 4. These assessments highlight the fact that Atta colonies may become more selective as foraging distance to the nest increases and in response to fluctuations in the availability of palatable resources throughout the year. The results also show some dissimilarities in the foraging behaviours of A. laevigata when compared with other locations, suggesting that widely distributed herbivores may modify foraging strategies across their geographic range.  相似文献   

17.
The high degree of isolation of forest “islands” relative to “continental” forested areas creates a naturally fragmented landscape in the savanna ecosystem. Because fragmentation can affect the intensity and quality of biological interactions (e.g., seed dispersal) we examined the abundance and species richness of seed rain produced by birds and bats in three different parts of forest islands (center, edge, and exterior) located at the Estación Biológica del Beni, Bolivia. Despite the fact that we found higher species density of seeds in the seed rain at the center of forest islands, when comparing species richness corrected for observed differences in density, species richness was higher at the edge of islands. The three parts of the islands did not differ in total number of seeds. Three genera (Byrsonima, Ficus, and Piper) contributed the most seeds to the seed rain. We found differences in the abundance of dispersed seeds probably because of the variation related with the disturbance line, where the savanna matrix interacts with the forest islands. Carollia perspicillata, Carollia brevicauda, and Sturnira lilium were the bats that contributed most to seed dispersal within forest islands, and Schistochlamys melanopis and Tyranneutes stolzmanni were the most important birds. The movement of seeds produced by bats and birds within forest islands of the savanna is crucial to assure the continuity of ecological process and dynamics of these forest islands.  相似文献   

18.
 The mycorrhizae of a tropical savanna growing in oligotrophic and stony soils were compared with those of a disturbed area that had been reclaimed with introduced species and of an area that was disturbed but not revegetated. All were compared with natural regeneration in a savanna that had been disturbed 12 years previously. Arbuscular mycorrhizae (AM) were common in savannas. Cyperaceae species, which were codominant with Graminaea, showed high levels of infection frequency (45%) like the Gramineae (61%). Arbuscules observed in the Cyperaceae indicated functionality. There were few plants in disturbed, nonrevegetated sites, but those present had AM. Observations of roots from soil monoliths showed that AM were present in disturbed areas, but compared with natural, succesional and revegetated savanna had a lower infection frequency (48–59% vs 75%), lower intensity (10–15% vs 25%) and a lower percentage of arbuscules (0.7–0.8% vs 2.3%). The percentage of vesicles was also lower in succesional savanna than in natural savanna (1.6% vs 4.8%). The revegetated site had the highest percentage of vesicles (6.6%). Although a high frequency of mycorrhizal infection has been reestablished in disturbed areas, the intensity and structure of the infection suggests that mycorrhizal function has not been restored to the original levels. We hypothesize that neither plants nor fungi have adapted to the new edaphic conditions. Accepted: 10 July 1995  相似文献   

19.
Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species'' distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species'' paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence.  相似文献   

20.
Plant species diversity maintains the stability of ecosystems and the diversity of consumer species such as insect herbivores. Considering that gall-inducing insects are highly specialized on their host plants and dependent on the occurrence, abundance and distribution of plants, we evaluated the diversity patterns of gall-inducing insect along Brazilian Neotropical savannas and the potential role of plant species richness, vegetation structure and super-host presence on determining these patterns. We found 1,882 individual plants that belonged to 64 different host plant species grouped in 31 families, associated to 112 galling insect species. The galling richness was positively influenced by plant species richness and the presence of the super-host genus Qualea (Vochysiaceae). Plant species richness explained 48 % of the galling richness and areas with presence of super-hosts had more than twice of galling species than areas where they were absent. On the other hand, we found no evidence that larger plants hosted more species of galling insects. We observed that for the diversity of galling insects in the Brazilian Cerrado, vegetation structure explained almost the same portion as plant richness, because structural variables did not have an effect on residuals of galling richness and plant richness regression. Our findings suggests that plant richness has a more important role on the mitigation of natural enemies and adaptive radiation of galling species, while structural aspects of the vegetation does not seem to have that effect. Furthermore, we show that the super-host taxa provide an increment in local galling richness because they present a great diversity of local number of gall morphospecies (i.e. alpha diversity) and the high turnover of morphospecies among different localities (i.e. beta diversity). Therefore we argue that the quality of resources (richness and super host presence) appears to be a most important factor for the diversity of galling insects in Neotropical systems, than the amount of resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号