首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cotton (Gossypium hirsutum L.) ovules grown in a defined nutrient medium undergo normal morphogenesis, including fiber production. In identical medium lacking boron, ovules callus and accumulate brown substances. Boron deficiency-like symptoms were induced by 6-azauracil and 6-azauridine in ovules growing in boron-sufficient media. Other nucleoside base analogs either reduced or had no effect on over-all growth, but did not cause typical boron-deficient callus growth of cotton ovules. Orotic acid and uracil countered the effects of 6-azauracil. Actinomycin D, fluorodeoxyuridine, and ethidium bromide reduced not only fiber production on ovules growing in boron-sufficient media but also callusing of ovules in boron-deficient media.  相似文献   

2.
Boron is required for fiber growth and development in cotton ovules cultured in vitro. Incorporation of [14C]glucose by such fiber from supplied UDP-[14C]glucose into the hot alkali-insoluble fraction is rapid and linear for about 30 minutes. Incorporation of [14C]glucose from such substrate by fibers grown in boron-deficient ovule cultures is much less than in the case with fibers from ovules cultured with boron in the medium. Total products (alkali-soluble plus alkali-insoluble fractions) were also greater in fibers from ovules cultured with boron. The fraction insoluble in acetic-nitric reagent was a small part of the total glucans; however, in the boron-sufficient fibers, there was significantly more of this fraction than in fibers from boron-deficient ovule cultures. The hot water-soluble glucose polymers from the labeled fibers had a significant fraction of the total [14C]glucose incorporated from UDP-[14C]glucose. Both β-1,4- and β-1,3- water-soluble polymers were formed in the boron-sufficient fibers, whereas the same water-soluble fraction from the boron-deficient fibers was predominantly β-1,3-polymers. The incorporation of [14C]glucose from GDP-[14C]glucose by the fibers attached to the ovules was insignificant.  相似文献   

3.
Effect of boron on cell elongation and division in squash roots   总被引:7,自引:4,他引:3       下载免费PDF全文
Cohen MS 《Plant physiology》1977,59(5):884-887
This work establishes that cessation of root elongation of intact squash (Cucurbita pepo L.) plants is an early result of boron deficiency. Root elongation is slowed by 6 hours and is virtually stopped as early as 24 hours after boron is first withheld from the nutrient solution. As root elongation ceased, cell elongation progressed distally into the region normally occupied by the apical meristem and eventually the meristem became indistinguishable. Differentiation was determined by use of an elongation index in which cell length was compared to cell width. This index ranged from a low of 0.8 in boron-sufficient root meristems to a high of 3 in root meristems grown in a boron-deficient nutrient solution for 98 hours. It is concluded that a continuous supply of boron is not essential for cell elongation but is required for maintenance of meristematic activity. Boron may act as a regulator of cell division in this tissue.  相似文献   

4.
5.
Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development. We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs.  相似文献   

6.
Pyrimidine Pathway in Boron-deficient Cotton Fiber   总被引:2,自引:1,他引:1       下载免费PDF全文
Cotton ovules cultured in an insufficiency of boron (10 micromolar), showed inhibition of fiber growth by the ninth day in culture. Averaging data from eight to eleven days of culture under these conditions, total incorporation of [6-14C]orotic acid into fiber was inhibited by 59%. Inhibition was evident in all radioactively labeled pools, indicating that the effect may be at the membrane transport level or at an early stage of orotic acid metabolism. On a per cent basis, incorporation into RNA under boron deficiency was higher than under sufficiency. The effect is greater on the eighth day of culture, with a decreasing difference from controls up to the eleventh day. Conversely, the per cent incorporation into UDP-glucose was lower under boron deficiency than in controls, having a more or less constant value from 8 to 11 days of culture. Thus, a primary event of boron deficiency in cotton fiber culture is an alteration in the flow of metabolites through the pyrimidine synthesis pathway.  相似文献   

7.
Ji SJ  Lu YC  Feng JX  Wei G  Li J  Shi YH  Fu Q  Liu D  Luo JC  Zhu YX 《Nucleic acids research》2003,31(10):2534-2543
Cotton fibers are differentiated epidermal cells originating from the outer integuments of the ovule. To identify genes involved in cotton fiber elongation, we performed subtractive PCR using cDNA prepared from 10 days post anthesis (d.p.a.) wild-type cotton fiber as tester and cDNA from a fuzzless-lintless (fl) mutant as driver. We recovered 280 independent cDNA fragments including most of the previously published cotton fiber-related genes. cDNA macroarrays showed that 172 genes were significantly up-regulated in elongating cotton fibers as confirmed by in situ hybridization in representative cases. Twenty-nine cDNAs, including a putative vacuolar (H+)-ATPase catalytic subunit, a kinesin-like calmodulin binding protein, several arabinogalactan proteins and key enzymes involved in long chain fatty acid biosynthesis, accumulated to greater than 50-fold in 10 d.p.a. fiber cells when compared to that in 0 d.p.a. ovules. Various upstream pathways, such as auxin signal transduction, the MAPK pathway and profilin- and expansin-induced cell wall loosening, were also activated during the fast fiber elongation period. This report constitutes the first systematic analysis of genes involved in cotton fiber development. Our results suggest that a concerted mechanism involving multiple cellular pathways is responsible for cotton fiber elongation.  相似文献   

8.
Brassinosteroid regulates fiber development on cultured cotton ovules   总被引:15,自引:0,他引:15  
Our current understanding of the role of phytohormones in the development of cotton fibers is derived largely from an amenable culture system in which cotton ovules, collected on the day of anthesis, are floated on liquid media. Under these conditions, supplemental auxin and gibberellin were found to promote fiber initiation and elongation. More recently, addition of low concentrations of the brassinosteroid brassinolide (BL) were also found to promote fiber elongation while a brassinosteroid biosynthesis inhibitor brassinazole2001 (Brz) inhibited fiber development. In order to elucidate the role of brassinosteroid in cotton fiber development further, we have performed a more detailed analysis of the effects of these chemicals on cultured cotton ovules. Our results confirm that exogenous BL promotes fiber elongation while treatment with Brz inhibits it. Furthermore, treatment of cotton floral buds with Brz results in the complete absence of fiber differentiation, indicating that BR is required for fiber initiation as well as elongation. Expression of fiber genes associated with cell elongation increased in ovules treated with BL and was suppressed by Brz treatment, establishing a correlation between brassinosteroid-regulated gene expression and fiber elongation. These results establish a clear connection between brassinosteroid and fiber development and open the door for genetic analysis of cotton development through direct modification of the brassinosteroid signal transduction pathway.  相似文献   

9.
Effect of phytohormones on fiber initiation of cotton ovule   总被引:1,自引:0,他引:1  
In order to study the effect of phytohormones on cotton fiber initiation, contents of four endogenous phytohormones and activities of four related enzymes in ovules (in vivo) of a fuzzless–lintless mutant (fl) and its wild-type (FL) line were measured from 4 days before anthesis (day −4) to 4 days after anthesis (day 4). The results showed that contents of indole-3-acetic acid, gibberellic acid (GA), and zeatin riboside in fl ovules were lower than those in FL ovules. Therefore, indole-3-acetic acid, GA, and zeatin riboside were thought to be the promoters of fiber initiation. Although abscisic acid (ABA) content in fl ovule was slightly higher than that in FL ovule on day 0, which might imply that ABA inhibited fiber initiation. Fiber initiation could also be influenced by enzyme through regulating synthesis and degradation of related phytohormones since fl ovules were significantly higher in activities of indole-3-acetic acid oxidase, cytokinin oxidase and peroxidase, but lower in activity of tryptophan synthetase than those in FL ovules. To test the above hypothesis, exogenous plant growth regulators were also applied for the culture of ovules from fl and FL in vitro. When no regulators were added, no fiber was induced on fl ovule, but a few fibers were induced in FL ovule. Higher total fiber units (TFU) were observed when indole-3-acetic acid and gibberellic acid (GA3) were applied either separately or in combination to media. TFU did not increased with zeatin riboside alone, but the highest TFU was achieved when zeatin riboside was applied together with indole-3 acetic acid and GA3, which implied that fiber initiation could be promoted by them as additive.  相似文献   

10.
Tanada T 《Plant physiology》1982,70(1):320-321
Boron has been found to be necessary for the delaying action of 710 nanometer irradiation on the nyctinastic closing of Albizzia julibrissin pinnules. It is effective only over a narrow micromolar range. In contrast, the delaying action of 470 nanometer irradiation on closure is inhibited by boron. The effect of boron on leaflet closing occurs rapidly. Boron is suggested to be involved in a phytochrome action that precedes and is required for a delaying effect on pinnule closing subsequently induced by an unknown far-red absorbing pigment.  相似文献   

11.
Importance of boron compounds in wood preservation is increasing due to their low environmental impact, high efficacy and the fact that many other active ingredients have been removed from the market after the introduction of the Biocidal Products Directive. The most important drawback of boron is prominent leaching in wet environment. In order to improve their fixation, and performance against wood decay fungi, boric acid was combined with montan wax emulsion. Possible synergistic effects of boric acid and montan wax were determined according to modified EN 113 procedure. Norway spruce and beech wood specimens were exposed to three white rot (Trametes versicolor, Pleurotus ostreatus and Hypoxylon fragiforme) and brown rot wood decay fungi (Gloeophyllum trabeum, Antrodia vaillantii and Serpula lacrymans) for 12 weeks. Boron leaching from vacuum/pressure treated Norway spruce wood was determined according to the continuous (EN 84 and ENV 1250-2) and non-continuous (OECD and prCEN/TS 15119-1) procedures. Boron was determined with ICP mass spectrometry in collected leachates. The results of the fungicidal tests clearly showed that montan wax emulsion and boric acid act synergistically against tested wood decay fungi. Approximately 50% lower boric acid retentions are required in combination with montan wax emulsions to achieve sufficient protection against wood rotting fungi. However, it is even more important that all leaching tests performed proved that the addition of montan wax decreased boron leaching from impregnated specimens for 20% up to 50%.  相似文献   

12.
Jasmonic acid (JA) is a well-characterized phytohormone that acts in various ways to influence plant development. Its role in cotton fiber development, however, has not yet been thoroughly explored. In this study, JA was proven to be an inhibitor of ovule and fiber development in vitro. Continuous exogenous JA application inhibited fiber elongation. This effect was dependent on development stage and dosage. Fibers and ovules at three different stages of development and different JA dosages were compared. The most serious suppression was detected when ovules 1?day before anthesis (–1?DPA) were cultured in medium with 2.5?μM JA. Genes related to trichome and fiber development responded differently to JA treatment between –1?DPA and 1?day post anthesis (1 DPA). JAs (JA and JA-Ile) quantification showed that JAs content was sharply decreased from –1?DPA to 5?DPA ovules, which indicated that JA was negatively associated with fiber elongation in vivo. In addition, gene expression analysis showed the same trend. Our results demonstrate that there was a negative relationship of JA with fiber elongation in vitro and in vivo. These results are meaningful for uncovering the mechanism of fiber elongation in cotton.  相似文献   

13.
14.
Previous work has provided evidence that plants may require boron to maintain adequate levels of pyrimidine nucleotides, suggesting that the state of boron deficiency may actually be one of pyrimidine starvation. Since the availability of pyrimidine nucleotides is influenced by their rates of synthesis, salvage, and catabolism, we compared these activities in the terminal 3 centimeters of roots excised from boron-deficient and -sufficient squash plants (Cucurbita pepo L.). Transferring 5-day-old squash plants to a boron-deficient nutrient solution resulted in cessation of root elongation within 18 hours. However, withholding boron for up to 30 hours did not result in either impaired de novo pyrimidine biosynthesis or a change in the sensitivity of the de novo pathway to regulation by end product inhibition. Boron deprivation had no significant effect on pyrimidine salvage or catabolism. These results provide evidence that boron-deficient plants are not starved for uridine nucleotides collectively. Whether a particular pyrimidine nucleotide or derivative is limiting during boron deprivation remains to be examined.  相似文献   

15.
Several lines of evidence implicate ammonium as an important factor in the growth and development of cotton (Gossypium hirsutum L.) ovules cultured in vitro. For example, ovules cultured at 28 C require indoleacetic acid (IAA) and either ammonium or gibberellic acid (GA3) in the medium for fiber development, whereas ovules cultured at 34 C require only IAA. Because of this effect of ammonium supply, it seemed possible that hormones or increased temperature were also promoting the availability of reduced nitrogen by induction of increased nitrate reductase activity in the ovules. This possibility was tested.  相似文献   

16.
The composition of the cell wall of the cotton fiber (Gossypium hirsutum L. Acala SJ-1) has been studied from the early stages of elongation (5 days postanthesis) through the period of secondary wall formation, using cell walls derived both from fibers developing on the plant and from fibers obtained from excised, cultured ovules. The cell wall of the elongating cotton fiber was shown to be a dynamic structure. Expressed as a weight per cent of the total cell wall, cellulose, neutral sugars (rhamnose, fucose, arabinose, mannose, galactose, and noncellulosic glucose), uronic acids, and total protein undergo marked changes in content during the elongation period. As a way of analyzing absolute changes in the walls with time, data have also been expressed as grams component per millimeter of fiber length. Expressed in this way for plant-grown fibers, the data show that the thickness of the cell wall is relatively constant until about 12 days postanthesis; after this time it markedly increases until secondary wall cellulose deposition is completed. Between 12 and 16 days postanthesis increases in all components contribute to total wall increase per millimeter fiber length. The deposition of secondary wall cellulose begins at about 16 days postanthesis (at least 5 days prior to the cessation of elongation) and continues until about 32 days postanthesis. At the time of the onset of secondary wall cellulose deposition, a sharp decline in protein and uronic acid content occurs. The content of some of the individual neutral sugars changes during development, the most prominent change being a large increase in noncellulosic glucose which occurs just prior to the onset of secondary wall cellulose deposition. Methylation analyses indicate that this glucose, at least in part, is 3-linked. In contrast to the neutral sugars, no significant changes in cell wall amino acid composition are observed during fiber development.  相似文献   

17.
18.
19.
20.
Summary Abscisic acid (ABA) inhibits in vitro growth of cotton (Gossypium hirsutum L.) fiber and is effective only when applied during the first four days of culture started on the day of anthesis. Abscisic acid causes a small increase in potassium uptake by the ovules and also enhances leakage of potassium from them. During their period of rapid growth, fibers produced by ABA-treated ovules have a higher potassium content and a lower malate content as compared to fibers on untreated control ovules. Results are discussed in the light of earlier reports on the in vitro growth of cotton fiber and effects of abscisic acid on other plant tissues. It is suggested that ABA inhibits fiber growth, in part, by interfering with malate metabolism.Abbreviations ABA abscisic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - TFU total fiber units  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号