首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study focused on the differential expression levels of proteins that may exist between bone-derived and marrow-derived vascular endothelial cells (BVEC and MVEC). The vascular cells were isolated from trabecular bone regions and central marrow cavity regions of mouse long bones. Cells were cultured for 1 week to expand the population then separated from non-vascular cells using biotinylated isolectin B4, streptavidin-coated metallic microbeads, and a magnetic column. After an additional week of culture time, RNA was isolated from both cell types and compared using microarray analysis. RT-PCR was used to confirm and relatively quantitate the RNA messages. The bone-derived cells expressed more aldehyde dehydrogenase 3A1 (ALDH3A1), Secreted Modular Calcium-2 (SMOC-2), CCAAT enhancer binding protein (C/EBP-beta), matrix metalloproteinase 13 (MMP-13), and annexin 8 (ANX8) than the marrow-derived cells. Spalpha and matrix GLA-protein (MGP) were produced in greater abundance by the marrow-derived cells. This study reveals that there are profound and unique differences between the vasculature of the metaphysis as compared to that of the central marrow cavity. The unique array of proteins expressed by the bone-derived endothelial cells may support growth of tumors from cancer cells that frequently metastasize and lodge in the trabecular bone regions.  相似文献   

2.
Endothelial cell lines express markers and are assumed to exhibit other endothelial cell responses. We investigated E-selectin expression from human umbilical vein endothelial cells, the spontaneously transformed ECV304 line and the hybrid line EA.hy926 by flow cytometry and immunofluorescence, mRNA and soluble E-selectin release. In cells exposed to tumour necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1beta), median (range) percentage of E-selectin-positive HUVECs increased from 1.6(0.9-6. 2)% to 91.4(83.0-96.1)%, (P=0.001) using flow cytometry. In contrast, E-selectin expression by ECV304 and EA.hy926 cell lines was 100-fold lower. E-selectin mRNA was detectable after 2 h, maximal at 6 h in HUVECs and undetectable in EA.hy926 and ECV304 cell lines after exposure to TNF-alpha/IL-1beta. sE-selectin accumulation increased (P=0.004) in HUVECs only. Neutrophil adherence to ECV304 and EA.hy926 cells was poor compared to HUVECs (P=0.004). The cell lines ECV304 and EA.hy926 do not exhibit normal endothelium expression of E-selectin, and may not be appropriate for studies of adhesion.  相似文献   

3.
Leukocyte infiltration is a hallmark of the atherosclerotic lesion. These cells are captured by cellular adhesion molecules (CAMs), including vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), platelet-endothelial cell adhesion molecule (PECAM), and E-selectin, on endothelial cells (EC). We examined the role of the actin cytoskeleton in tumor necrosis factor-alpha (TNF-alpha)-induced translocation of CAMs to the cell surface. Human aortic EC were grown on 96-well plates and an ELISA was used to assess surface expression of the CAMs. TNF-alpha increased VCAM-1, ICAM-1, and E-selectin by 4 h but had no affect on the expression of PECAM. A functioning actin cytoskeleton was important for VCAM-1 and ICAM-1 expression as both cytochalasin D, an actin filament disruptor, and jasplakinolide, an actin filament stabilizer, attenuated the expression of these CAMs. These compounds were ineffective in altering E-selectin surface expression. Myosin light chains are phosphorylated in response to TNF-alpha and this appears to be regulated by Rho kinase instead of myosin light chain kinase. However, the Rho kinase inhibitor, Y27632, had no affect on TNF-alpha-induced CAM expression. ML-7, a myosin light chain kinase inhibitor, had a modest inhibitory effect on the translocation of VCAM-1 but not on ICAM-1 or E-selectin. These data suggest that the surface expression of VCAM-1 and ICAM-1 is dependent on cycling of the actin cytoskeleton. Nevertheless, modulation of actin filaments via myosin light chain phosphorylation is not necessary. The regulation of E-selectin surface expression differs from that of the other CAMs.  相似文献   

4.
Previously, we reported that the consecutive administration of lipopolysaccharide (LPS) into LPS-sensitized mice for the generalized Shwartzman reaction (GSR) induced systemic injury of vascular endothelial cells. The aim of this study was to investigate the participation of vascular adhesion molecules in the vascular endothelial injury of GSR. The administration of anti-E-selectin antibody in GSR-induced mice resulted in massive apoptosis of vascular endothelial cells and congestion in blood vessels. Further, marked hemorrhage was found in the pulmonary alveoli of those mice. GSR, especially lung injury, was definitely exacerbated by the administration of anti-E-selectin antibody. On the other hand, the administration of anti-VCAM-1 antibody did not induce such injury of vascular endothelial cells. The possible role of E-selectin in the exacerbation of vascular endothelial injury in GSR is discussed.  相似文献   

5.
Interactions between leukocytes and vascular endothelial cells are mediated by a complex set of membrane adhesion molecules which transduce bi-directional signals in both cell types. Endothelium of the cerebral blood vessels, which constitute the blood-brain barrier, strictly controls adhesion and trafficking of leukocytes into the brain. Investigating signaling pathways triggered by the engagement of adhesion molecules expressed on brain endothelial cells, we previously documented the role of ICAM-1 in activation of the tyrosine phosphorylation of several actin-binding proteins and subsequent rearrangements of the actin cytoskeleton. In the present study, we show that, whereas PECAM-1 is known to control positively the trans-endothelial migration of leukocytes via homophilic interactions between leukocytes and endothelial cells, PECAM-1 engagement on brain endothelial surface unexpectedly counteracts the ICAM-1-induced tyrosine phosphorylation of cortactin and rearrangements of the actin cytoskeleton. We present evidence that the PECAM-1-associated tyrosine phosphatase SHP-2 is required for ICAM-1 signaling, suggesting that its activity might crucially contribute to the regulation of ICAM-1 signaling by PECAM-1. Our findings reveal a novel activity for PECAM-1 which, by counteracting ICAM-1-induced activation, could directly contribute to limit activation and maintain integrity of brain vascular endothelium.  相似文献   

6.
Immunoadhesins are immunoglobulin (Ig)-like chimeric proteins comprised of target-binding regions fused to the Fc-hinge region of Ig, and are designed to have a long half-life and antibody-like properties. In an effort to find a good candidate for therapeutic use for inflammatory responses, we constructed a soluble human E-selectin immunoadhesin containing the extracellular region of human E-selectin fused to the Fc-hinge region of human IgG, and determined its effects on leukocyte adhesion and rolling in vitro. Our results revealed that the adhesion of leukocytes to endothelial cells was efficiently inhibited in the presence of 50 nM E-selectin immunoadhesin. In addition, the E-selectin immunoadhesin significantly inhibited leukocyte rolling on endothelial cells in perfusion experiments performed at 1.0 dyne/cm(2) wall shear stress. These findings indicate that our E-selectin immunoadhesin decreases leukocyte attachment and rolling in vitro, suggesting that this immunoadhesin may be a promising candidate for therapeutic anti-inflammatory use.  相似文献   

7.
Vascular endothelial cells are structurally and functionally heterogeneous. However, the molecular basis of this heterogeneity remains poorly defined. We used subtractive and differential screening to identify genes that exhibit heterogeneous expression patterns among vascular endothelial cells. One such gene is cellular retinol binding protein III (CRBP-III/Rbp7). Analysis of the lacZ knockin line for this gene (CRBP-III:lacZ) revealed a novel organ-specific vascular endothelial expression pattern. LacZ was expressed in vascular endothelial cells in heart, skeletal muscle, adipose tissues, thymus, and salivary gland. However, it was not detected in other tissues such as brain, liver, and lung. Furthermore, the expression within each organ was primarily restricted to small capillary endothelial cells, but could not be detected in larger vessels. This organ-specific vascular endothelial expression of CRPB:lacZ is relatively resistant to the changes of organ microenvironment. However, the level of expression can be modified by vitamin A deficiency. Therefore, our results provide novel molecular evidence for the heterogeneity of vascular endothelial cells.  相似文献   

8.
9.
Zhang J  Rui YC  Yang PY  Lu L  Li TJ 《Life sciences》2006,78(26):2983-2988
Ischemic stroke can trigger an acute phase response resulting in a rise of plasma concentration of C-reactive protein (CRP). Clinical data about the relationship between CRP and prognosis suggest that CRP might be involved in the pathogenesis of cerebral ischemia. In the present work, a significant increase of circulating level of CRP was observed in an vivo rat brain ischemia model of middle cerebral artery occlusion. To determine the possible effects of CRP on brain microvessel endothelium, we performed a dose-dependent experiment in mouse brain microvascular endothelial cells (bEnd.3 cells) with emphasis on its relation to cell adhesions molecules. Incubation with CRP (1-75 mg/L) for 24 h significantly increased Lactate dehydrogenase (LDH) leakage from bEnd.3 cells (P<0.01) in a dose-dependent manner, and induced significant up-regulations of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions analyzed by Western blotting (P<0.01). In contrast to earlier report, CRP also induced significant increase in ICAM-1 expression in the absence of serum (P<0.01). In conclusion, the present results suggest that CRP may be involved directly in the development of inflammation in response to cerebral ischemia.  相似文献   

10.
Vascular endothelial growth factor‐D (VEGF‐D) is an angiogenic and lymphangiogenic glycoprotein that facilitates tumour growth and distant organ metastasis. Our previous studies showed that VEGF‐D stimulates the expression of proteins involved in cell–matrix interactions and promoting the migration of endothelial cells. In this study, we focused on the redox homoeostasis of endothelial cells, which is significantly altered in the process of tumour angiogenesis. Our analysis revealed up‐regulated expression of proteins that form the antioxidant barrier of the cell in VEGF‐D‐treated human umbilical endothelial cells and increased production of reactive oxygen and nitrogen species in addition to a transient elevation in the total thiol group content. Despite a lack of changes in the total antioxidant capacity, modification of the antioxidant barrier induced by VEGF‐D was sufficient to protect cells against the oxidative stress caused by hypochlorite and paraquat. These results suggest that exogenous stimulation of endothelial cells with VEGF‐D induces an antioxidant response of cells that maintains the redox balance. Additionally, VEGF‐D‐induced changes in serine/threonine kinase mTOR shuttling between the cytosol and nucleus and its increased phosphorylation at Ser‐2448, lead us to the conclusion that the observed shift in redox balance is regulated via mTOR kinase signalling.  相似文献   

11.
Endothelial cells play a major role in immunologic reactions, in which cellular adhesion molecules P-selectin, ICAM-1, VCAM-1, and ELAM-1 are important mediators in the recruitment of leukocytes in pulmonary inflammation. Selenium (Se) is known to modulate immunological mechanisms of asthma. The aim of our investigation was to examine whether Se supplementation in cortico-dependent asthmatic patients may modulate adhesion molecule expression in cultured endothelium. Our findings indicated that P-selectin, VCAM-1, and ELAM-1 expression on human umbilical vein endothelial cells stimulated with peripheral blood mononuclear cells obtained from asthmatics before supplementation with Se was significantly higher than from healthy donors (p < 0.05). The production of ICAM-1 showed only slight augmentation. The levels of VCAM-1 and ELAM-1 expression were significantly decreased after 3 mo of Se supplementation (p < 0.05). After 6 mo of intervention period the intensity of P-selectin and ICAM-1 expression was also significantly reduced (p < 0.05 andp < 0.01, respectively). The inhibitory effect of Se on the adhesion molecule expression was studied in cultured endothelial cells after interferon-γ stimulation. Our data suggest that Se affects the expression of P-selectin, ICAM-1, VCAM-1, and ELAM-1 in a dosedependent manner and the half-maximal inhibitory concentrations were 3.4, 0.5, 4, and 3.8 μg/mL, respectively. The maximal inhibitions (greater than 80%) were observed in vitro with 10 μg/mL Se (p < 0.01). Regulation of adhesion molecule expression may be an important mechanism through which the inflammation may be controlled.  相似文献   

12.
In this short review we describe the observations which have led us to conclude that one of the most important components involved in modulating cell proliferation in vitro, and probably in vivo as well, may be the extrac-cellular matrix upon which cells rest.  相似文献   

13.
The amount of sialic acid on the surface of the neutrophil (PMN) influences its ability to interact with other cells. PMN activation with various stimuli mobilizes intracellular sialidase to the plasma membrane, where it cleaves sialic acid from cell surfaces. Because enhanced PMN adherence, spreading, deformability, and motility each are associated with surface desialylation and are critical to PMN diapedesis, we studied the role of sialic acid on PMN adhesion to and migration across pulmonary vascular endothelial cell (EC) monolayers in vitro. Neuraminidase treatment of either PMN or EC increased adhesion and migration in a dose-dependent manner. Neuraminidase treatment of both PMNs and ECs increased PMN adhesion to EC more than treatment of either PMNs or ECs alone. Moreover, neuraminidase treatment of ECs did not change surface expression of adhesion molecules or release of IL-8 and IL-6. Inhibition of endogenous sialidase by either cross-protective antineuraminidase antibodies (45.5% inhibition) or competitive inhibition with pseudo-substrate (41.2% inhibition) decreased PMN adhesion to ECs; the inhibitable sialidase activity appeared to be associated with activated PMNs. Finally, EC monolayers preincubated with activated PMNs became hyperadhesive for subsequently added resting PMNs, and this hyperadhesive state was mediated through endogenous PMN sialidase activity. Blocking anti-E-selectin, anti-CD54 and anti-CD18 antibodies decreased PMN adhesion to tumor necrosis factor-activated ECs but not to PMN-treated ECs. These data implicate desialylation as a novel mechanism through which PMN-EC adhesion can be regulated independent of de novo protein synthesis or altered adhesion molecule expression. The ability of activated PMNs, through endogenous sialidase activity, to render the EC surface hyperadherent for unstimulated PMNs may provide for rapid amplification of the PMN-mediated host response.  相似文献   

14.
15.
血管内皮细胞容量激活的氯通道   总被引:4,自引:0,他引:4  
氯通道是血管内皮细胞上主要的离子通道,容量激活的氯通道是其中一种主要类型并广为研究。已经主宰容量激活的氯通道在维持静息膜电位,调节细胞内钙、pH值,影响细胞增殖和分化中起着重要的作用。本文综述了血管内皮细胞容量激活氯通道的基本电生理及分子生物学特性,并初步探讨该通道的调节机制。  相似文献   

16.
The balance between lesion and regeneration of the endothelium is critical for the maintenance of vessel integrity. Exposure to cardiovascular risk factors (CRF) alters the regulatory functions of the endothelium that progresses from a quiescent state to activation, apoptosis and death. In the last 10 years, identification of circulating endothelial cells (CEC) and endothelial-derived microparticles (EMP) in the circulation has raised considerable interest as non-invasive markers of vascular dysfunction. Indeed, these endothelial-derived biomarkers were associated with most of the CRFs, were indicative of a poor clinical outcome in atherothrombotic disorders and correlated with established parameters of endothelial dysfunction. CEC and EMP also behave as potential pathogenic vectors able to accelerate endothelial dysfunction and promote disease progression. The endothelial response to injury has been enlarged by the discovery of a powerful physiological repair process based on the recruitment of circulating endothelial progenitor cells (EPC) from the bone marrow. Recent studies indicate that reduction of EPC number and function by CRF plays a critical role in the progression of cardiovascular diseases. This EPC-mediated repair to injury response can be integrated into a clinical endothelial phenotype defining the 'vascular competence' of each individual. In the future, provided that standardization of available methodologies could be achieved, multimarker strategies combining CEC, EMP and EPC levels as integrative markers of 'vascular competence' may offer new perspectives to assess vascular risk and to monitor treatment efficacy.  相似文献   

17.
In this study, we report on the interferon-γ (IFN-γ) and interleukin-4 (IL-4) cytokine responses to phorbol myristate acetate (PMA)+ionomycin-stimulated CD3+ lymphocytes in asthmatic subjects when compared with normal donors. There was a significantly lower production of intracellular IFN-γ in asthmatic patients. No difference was found for IL-4 production between these two groups. After administration of a multivitamin-mineral supplement containing selenium, zinc, vitamin A, vitamin B6, vitamin C, and vitamin E for 6 mo, a significant increase in the percentage of CD3+/IL-4 positive cells (p<0.05) was found. The induction of endothelial cell adhesion molecule (CAM) expression in cultured human umbilical vein endothelial cells (HUVEC) and whole-blood mixture was studied using flow cytometry. The ICAM-1 and VCAM-1 expressions were higher in the patients than in control donors (p<0.05). There is a correlation between the increased percentage of CD3+/IFN-γ positive cells and reduced endothelial ICAM-1 and VCAM-1 expression after 6 mo of intervention period. No apparent effect of supplementation on CAM expression was found, suggesting that these changes do not arise from an antioxidant mechanism. This newly developed whole-blood technique for the assessment of CAM expression can be of use for monitoring therapy in inflammatory diseases.  相似文献   

18.
Bone development and remodeling depend on complex interactions between bone-forming osteoblasts, bone-degrading osteoclasts, and other cells present within the bone microenvironment. Balanced control of bone formative and degradative processes is normally carefully maintained in the adult skeleton but becomes uncoupled in the course of aging or in various pathological disease states. Systemic regulators of bone metabolism and local mediators, including matrix molecules, cytokines, prostaglandins, leukotrienes, and other autocrine or paracrine factors, regulate the recruitment, differentiation, and function of cells participating in bone formation and turnover. Although some of these interactions are now understood, many yet remain to be elucidated. Recent studies have begun exploring in detail how vascular endothelial cells and their products function in bone physiology. The findings are revealing that bone vascular endothelial cells may be members of a complex communication network in bone which operates between endothelial cells, osteoblasts, osteoclasts, macrophages, stromal cells, and perhaps other cell types found in bone as well. Therefore, multiple systemic and locally produced signals may be received, transduced, and integrated by individual cells and then propagated by the release from these cells of further signals targeted to other members of the bone cell network. In this manner, bone cell activities may be continuously coordinated to afford concerted actions and rapid responses to physiological changes. The bone microvasculature may play a pivotal role in these processes, both in linking circulatory and local signals with cells of the bone microenvironment and in actively contributing itself to the regulation of bone cell physiology. Thus, skeletal homeostasis and the coupling observed between bone resorption and bone formation during normal bone remodeling may be manifestations of this dynamic interactive communication network, operating via diverse signals not only between osteoblasts and osteoclasts but between many cell types residing within bone. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Fan B  Wang YX  Yao T  Zhu YC 《生理学报》2005,57(1):13-20
血管内皮细胞中血管内皮生长因子(vascular endothelial growthfactor,VEGF)的合成增加在促进血管新生的过程中起着非常重要的作用.然而低氧诱导VEGF分泌的细胞内信号转导机制还不是很清楚.人脐静脉内皮细胞系(ECV304)在低氧或常氧的状态下培养12~24 h后分别用实时定量PCR和Western blot的方法来检测VEGF mRNA的表达及ERK1/2和p38激酶的磷酸化水平.分泌到培养液中的VEGF蛋白用酶联免疫吸附(ELISA)的方法来检测.业已报道,ERK的抑制剂PD98059能够抑制低氧诱导的VEGF基因的表达,根据这个报道,我们发现在低氧情况下,ECV304细胞的ERK1/2磷酸化水平增高以及VEGF的合成增加等这些变化也能被PD98059所抑制.本次实验的新发现是p38激酶的激活在低氧诱导VEGF合成增加中的作用.p38激酶的抑制剂SB202190能抑制低氧诱导的VEGF合成增加.这些数据首次直接证实了p38激酶在低氧诱导人内皮细胞分泌VEGF增加过程中的作用.  相似文献   

20.
目的:研究肌肽对低氧所致大鼠血管内皮细胞损伤的影响。方法:建立低氧条件下大鼠血管内皮细胞损伤模型,用MTT法观察肌肽对低氧损伤的血管内皮细胞活性的影响,测定细胞培养基中LDH活力,并对细胞骨架进行考马斯亮蓝R-250染色观测其细胞结构。结果:浓度为10mmol/L~20mmol/L肌肽孵育血管内皮细胞6h后,可以抑制缺氧12h和24h引起的血管内皮细胞活性下降,同时减少LDH的释放,保持细胞骨架完整。结论:肌肽对低氧所致的血管内皮细胞损伤具有保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号