首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Steady-state parameters governing cleavage of pBR322 DNA by EcoRI endonuclease are highly sensitive to ionic environment, with K(m) and k(cat) increasing 1,000-fold and 15-fold, respectively, when ionic strength is increased from 0.059 to 0.23 M. By contrast, pre-steady-state analysis has shown that recognition, as well as first and second strand cleavage events that occur once the enzyme has arrived at the EcoRI site, are essentially insensitive to ionic strength, and has demonstrated that the rate-limiting step for endonuclease turnover occurs after double-strand cleavage under all conditions tested. Furthermore, processive cleavage of a pBR322 variant bearing two closely spaced EcoRI sites is governed by the same turnover number as hydrolysis of parental pBR322, which contains only a single EcoRI sequence, ruling out slow release of the enzyme from the cleaved site or a slow conformational change subsequent to double-strand cleavage. We attribute the effects of ionic strength on steady-state parameters to nonspecific endonuclease.DNA interactions, reflecting facilitated diffusion processes, that occur prior to EcoRI sequence recognition and subsequent to DNA cleavage.  相似文献   

2.
To determine whether RsrI endonuclease recognizes and cleaves the sequence GAATTC in duplex DNA similarly to its isoschizomer EcoRI we initiated a functional comparison of the two enzymes. Equilibrium binding experiments showed that at 20 degrees C RsrI endonuclease binds to specific and nonspecific sequences in DNA with affinities similar to those of EcoRI. At 0 degrees C the affinity of RsrI for its specific recognition sequence is reduced 7-fold whereas the affinity for noncanonical sequences remains relatively unchanged. Unlike EcoRI, incubation of RsrI endonuclease with N-ethylmaleimide inactivates the enzyme; however, preincubation with DNA prevents the inactivation. The N-ethylmaleimide-treated enzyme fails to bind DNA as assayed by gel mobility shift assays. Comparison of the deduced amino acid sequences of RsrI and EcoRI endonucleases suggests that modification of Cys245 is responsible for the inactivation. Fe(II). EDTA and methidiumpropyl-EDTA.Fe(II) footprinting results indicate that RsrI, like EcoRI, protects 12 base pairs from cleavage when bound to its specific recognition sequence in the absence of Mg2+. RsrI bends DNA by approximately 50 degrees, as determined by measuring the relative electrophoretic mobilities of specific RsrI-DNA complexes with the binding site in the center or near the end of the DNA fragment. This value is similar to that reported for EcoRI. RsrI also unwinds the DNA helix by 25 degrees +/- 5 degrees, a value close to that reported for EcoRI endonuclease. Collectively, these results indicate that the overall structural changes induced in the DNA by the binding of RsrI and EcoRI endonucleases to DNA in the absence of Mg2+ are similar. In the accompanying paper (Aiken, C. R., McLaughlin, L. W., and Gumport, R. I. (1991) J. Biol. Chem. 266, 19070-19078) we present results of studies of RsrI endonuclease using oligonucleotide substrates containing base analogues which suggest differences in the ways the two enzymes cleave DNA.  相似文献   

3.
Seven oligonucleotide primers complementary to the plasmid vector pBR322 at positions adjacent to five of the unique restriction endonuclease cleavage sites (EcoRI, HindIII, BamHI, SalI and PstI) have been chemically synthesized. The polarity of the primers is such that any DNA inserted at one or a combination of two of the above restriction sites may be sequenced by the chain termination method using one of the synthetic DNA primers. One of the primers for sequencing inserts at the PstI site of pBR322 is also complementary to the M13 phage vector designated bla6. This set of universal primers is useful for rapid sequence determination of DNA cloned into pBR322 or M13bla6.  相似文献   

4.
We have investigated some properties related to interaction with DNA and recognition of AT-rich sequences of netropsin-oxazolopyridocarbazole (Net-OPC) (Mrani et al., 1990), which is a hybrid groove-binder-intercalator. The hybrid molecule Net-OPC binds to poly[d(A-T)] at two different sites with Kapp values close to 7 x 10(6) and 6 x 10(8) M-1 (100 mM NaCl, pH 7.0). Data obtained from melting experiments are in agreement with these values and indicate that Net-OPC displays a higher binding constant to poly[d(A-T)] than does netropsin. On the basis of viscometric and energy transfer data, the binding of Net-OPC to poly[d(A-T)] is suggested to involve both intercalation and external binding of the OPC chromophore. In contrast, on poly[d(G-C)], Net-OPC binds to a single type of site composed of two base pairs in which the OPC chromophore appears to be mainly intercalated. The binding constant of Net-OPC to poly[d(G-C)] was found to be about 350-fold lower than that of the high-affinity binding site in poly[d(A-T)]. As evidenced by footprinting data, Net-OPC selectively recognizes TTAA and CTT sequences and strongly protects the 10-bp AT-rich DNA region 3'-TTAAGAACTT-5' containing the EcoRI site. The binding of Net-OPC to this sequence results in a strong and selective inhibition of the activity of the restriction endonuclease EcoRI on the plasmid pBR322 as substrate. The extent of inhibition of the rate constant of the first strand break catalyzed by the enzyme is about 100-fold higher than the one observed in the presence of netropsin under similar experimental conditions.  相似文献   

5.
NaeI endonuclease binding to pBR322 DNA induces looping.   总被引:9,自引:0,他引:9  
Previous work has demonstrated the existence of both resistant and cleavable NaeI sites. Cleavable sites introduced on exogenous DNA can act in trans to increase the catalysis of NaeI endonuclease cleavage at resistant sites without affecting the apparent binding affinity of the enzyme for the resistant site [Conrad, M., & Topal, M. D. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9707-9711]. This activation suggests allosteric regulation of NaeI cleavage by distant cis- and trans-acting sites in DNAs containing both resistant and cleavable sites. Plasmid pBR322 contains four NaeI sites, at least one of which is resistant to cleavage. Electron microscopy is used here to demonstrate that NaeI endonuclease simultaneously binds to multiple recognition sites in pBR322 DNA to form loops with NaeI protein bound at the loop's base. The maximum number of loops formed with a common base suggests four binding sites per enzyme molecule. Looping was inhibited by addition of enzyme-saturating amounts of double-stranded oligonucleotide containing an NaeI site, whereas another double-strand oligonucleotide without the NaeI site had no effect. The number of loops seen was not above background when double-stranded M13 DNA, which contains only a single NaeI recognition site, was used as substrate.  相似文献   

6.
An ethidium homodimer and acridine ethidium heterodimer have been synthesized (Gaugain, B., Barbet, J., Oberlin, R., Roques, B. P., & Le Pecq, J. B. (1978) Biochemistry 17 (preceding paper in this issue)). The binding of these molecules to DNA has been studied. We show that these dimers intercalate only one of their chromophores in DNA. At high salt concentration (Na+ greater than 1 M) only a single type of DNA-binding site exists. Binding affinity constants can then be measured directly using the Mc Ghee & Von Hippel treatment (Mc Ghee, J. D., & Von Hippel, P. H. (1974) J. Mol. Biol. 86, 469). In these conditions the dimers cover four base pairs when bound to DNA. Binding affinities have been deduced from competition experiments in 0.2 M Na+ and are in agreement with the extrapolated values determined from direct DNA-binding measurements at high ionic strength. As expected, the intrinsic binding constant of these dimers is considerably larger than the affinity of the monomer (ethidium dimer K = 2 X 10(8) M-1; ethidium bromide K = 1.5 X 10(5) M-1 in 0.2 M Na+). The fluorescence properties of these molecules have also been studied. The efficiency of the energy transfer from the acridine to the phenanthridinium chromophore, in the acridine ethidium heterodimer when bound to DNA, depends on the square of the AT base pair content. The large increase of fluorescence on binding to DNA combined with a high affinity constant for nucleic acid fluorescent probes. In particular, such molecules can be used in competition experiments to determine the DNA binding constant of ligands of high binding affinity such as bifunctional intercalators.  相似文献   

7.
As shown by a nitrocellulose filter binding assay, in the absence of Mg2+ EcoRII restriction endonuclease binds specifically to a set of synthetic concatemer DNA duplexes of varying chain length, containing natural and modified recognition sites of this enzyme. The binding of the substrates with the central AT, TT or AA-pair in the recognition site decreases at AT greater than TT much greater than AA. Substitution of the pyrophosphate bond at the cleavage site for the phosphodiester or phosphoramide bond produces little influence on the stability of the complexes. The affinity of the enzyme for nonspecific sites is two orders of magnitude less than that for the specific EcoRII sequences. Equilibrium association constant for a substrate with one recognition site is 3.9 X 10(8) M-1. Addition of Mg2+ leads to the destabilization of the EcoRII endonuclease complex with DNA duplex, containing pyrophosphate bonds. The dissociation rate constants and the lifetime of the EcoRII endonuclease--synthetic substrates complexes have been determined.  相似文献   

8.
9.
P A Whitson  K S Matthews 《Biochemistry》1986,25(13):3845-3852
The dissociation kinetics for repressor-32P-labeled operator DNA have been examined by adding unlabeled operator DNA to trap released repressor or by adding a small volume of concentrated salt solution to shift the Kd of repressor-operator interaction. The dissociation rate constant for pLA 322-8, an operator-containing derivative of pBR 322, was 2.4 X 10(-3) s-1 in 0.15 M KCl. The dissociation rate constant at 0.15 M KCl for both lambda plac and pIQ, each of which contain two pseudooperator sequences, was approximately 6 X 10(-4) s-1. Elimination of flanking nonspecific DNA sequences by use of a 40 base pair operator-containing DNA fragment yielded a dissociation rate constant of 9.3 X 10(-3) s-1. The size and salt dependences of the rate constants suggest that dissociation occurs as a multistep process. The data for all the DNAs examined are consistent with a sliding mechanism of facilitated diffusion to/from the operator site. The ability to form a ternary complex of two operators per repressor, determined by stoichiometry measurements, and the diminished dissociation rates in the presence of intramolecular nonspecific and pseudooperator DNA sites suggest the formation of an intramolecular ternary complex. The salt dependence of the dissociation rate constant for pLA 322-8 at high salt concentrations converges with that for a 40 base pair operator. The similarity in dissociation rate constants for pLA 322-8 and a 40 base pair operator fragment under these conditions indicates a common dissociation mechanism from a primary operator site on the repressor.  相似文献   

10.
Kinetic mechanism of the EcoRI DNA methyltransferase   总被引:4,自引:0,他引:4  
N O Reich  N Mashhoon 《Biochemistry》1991,30(11):2933-2939
We present a kinetic analysis of the EcoRI DNA N6-adenosine methyltransferase (Mtase). The enzyme catalyzes the S-adenosylmethionine (AdoMet)-dependent methylation of a short, synthetic 14 base pair DNA substrate and plasmid pBR322 DNA substrate with kcat/Km values of 0.51 X 10(8) and 4.1 X 10(8) s-1 M-1, respectively. The Mtase is thus one of the most efficient biocatalysts known. Our data are consistent with an ordered bi-bi steady-state mechanism in which AdoMet binds first, followed by DNA addition. One of the reaction products, S-adenosylhomocysteine (AdoHcy), is an uncompetitive inhibitor with respect to DNA and a competitive inhibitor with respect to AdoMet. Thus, initial DNA binding followed by AdoHcy binding leads to formation of a ternary dead-end complex (Mtase-DNA-AdoHcy). We suggest that the product inhibition patterns and apparent order of substrate binding can be reconciled by a mechanism in which the Mtase binds AdoMet and noncanonical DNA randomly but that recognition of the canonical site requires AdoMet to be bound. Pre-steady-state and isotope partition analyses starting with the binary Mtase-AdoMet complex confirm its catalytic competence. Moreover, the methyl transfer step is at least 10 times faster than catalytic turnover.  相似文献   

11.
Quantitative analysis of nitrocellulose filter binding data by the method of Clore, Gronenborn and Davies [(1982) J. Mol. Biol. 155, 447-466] has been used to show that lambda integration protein (Int) exhibits cooperativity in binding to specific recognition sites within the attachment site region (lambda attP) of bacteriophage lambda DNA. Optimal values of the equilibrium constant obtained were 3.0(+/- 1.0) X 10(10) M-1 for the P' site using a model of three sites with equal affinity and 1.9(+/- 0.4) X 10(10) M-1 for the P1 site on a two-site model. The value of the cooperativity parameter alpha is 172(+106)(-66) in all cases. The occurrence of a consensus recognition sequence is necessary but not sufficient for strong binding; cooperative interaction between Int molecules binding to adjacent members of an array of binding sites is also essential. The occurrence of binding site arrays distinguishes lambda attP very clearly from other DNA sequences containing single recognition sites by chance.  相似文献   

12.
Site and sequence specificity of the daunomycin-DNA interaction   总被引:8,自引:0,他引:8  
The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These three experimental approaches provide mutually consistent results showing that daunomycin indeed recognizes specific sites along the DNA lattice. The affinity of daunomycin toward natural DNA increases with increasing GC content. The quantitative results are most readily explained by binding models in which daunomycin interacts with sites containing two adjacent GC base pairs, possibly occurring as part of a triplet recognition sequence. Deoxyribonuclease I footprinting studies utilizing the 160 base pair (bp) tyrT DNA fragment and 61 and 53 bp restriction fragments isolated from pBR322 DNA further define the sequence specificity of daunomycin binding. Specific, reproducible protection patterns were obtained for each DNA fragment at 4 degrees C. Seven protected sequences, ranging in size from 4 to 14 bp, were identified within the tyrT fragment. Relative to the overall tyrT sequence, these protected sequences were GC rich and contained a more limited and distinct distribution of di- and trinucleotides. Within all of the protected sequences, a triplet containing adjacent GC base pairs flanked by an AT base pair could be found in one or more copies. Nowhere in the tyrT fragment did that triplet occur outside a protected sequence. The same triplet occurred within seven out of nine protected sequences observed in the fragments isolated from pBR322 DNA. In the two remaining cases, three contiguous GC base pairs were found. We conclude that the preferred daunomycin triplet binding site contains adjacent GC base pairs, of variable sequence, flanked by an AT base pair. This conclusion is consistent with the results of a recent theoretical study of daunomycin sequence specificity [Chen, K.-X., Gresh, N., & Pullman, B. (1985) J. Biomol. Struct. Dyn. 3, 445-466]. Adriamycin and the beta-anomer of adriamycin produce the same qualitative pattern of protection as daunomycin with the tyrT fragment. Daunomycin inhibits the rate of digestion of pBR322 DNA by PvuI (recognition sequence 5'-CGATCG-3') to a greater extent than it does EcoRI (recognition sequence 5'-GAATTC-3'), a finding consistent with the conclusions derived from our footprinting studies. Our results, as a whole, are the clearest indication to date that daunomycin recognizes a specific DNA sequence as a preferred binding site.  相似文献   

13.
The binding of hemoglobin to the red cell membrane was characterized over a wide range of free hemoglobin concentrations by measurement of membrane bound and supernatant hemoglobin. Scatchard analysis of the binding data revealed two classes of sites: high affinity sites with a binding constant of 1 X 10(8) M-1 and 1.2 X 10(6) sites per cell, and a second, low affinity class of sites with a binding constant of 6 X 10(6)M-1 and 6 X 10(6) sites per cell. The low affinity sites are shown to be nonspecific and appear to be a result of the ghost preparation. The high affinity sites are shown to be specific to the inner surface of the red cell membrane. The competition of hemoglobin and glyceraldehyde-3-phosphate dehydrogenase suggests band III proteins as a potential binding site for hemoglobin.  相似文献   

14.
The cardiac troponin (Tn) complex, consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT), has been reconstituted from purified troponin subunits isolated from bovine heart muscle. The Ca2+-binding properties of cardiac Tn were determined by equilibrium dialysis using either EGTA or EDTA to regulate the free Ca2+ concentration. Cardiac Tn binds 3 mol Ca2+/mol and contains two Ca2+-binding sites with a binding constant of 3 X 10(8) M-1 and one binding site with a binding constant of 2 X 10(6) M-1. In the presence of 4 mM MgC12, the binding constant of the sites of higher affinity is reduced to 3 X 10(7) M-1, while Ca2+ binding to the site at the lower affinity is unaffected. The two high affinity Ca2+-binding sites of cardiac Tn are analogous to the two Ca2+-Mg2+ sites of skeletal Tn, while the single low affinity site is similar to the two Ca2+-specific sites of skeletal Tn (Potter, J. D., and Gergely, J. (1975) J. Biol. Chem. 250, 4625-5633). The Ca2+-binding properties of the complex of TnC and TnI (1:1 molar ratio) were similar to those of Tn. Cardiac TnC also binds 3 mol of Ca2+/mol and contains two sites with a binding constant of 1 X 10(7) M-1 and a single site with a binding constant of 2 X 10(5) M-1. Assuming competition between Mg2+ and Ca2+ for the high affinity sites of TnC and Tn, the binding constants for Mg2+ were 0.7 and 3.0 X 10(3) M-1, respectively. The Ca2+ dependence of cardiac myofibrillar ATPase activity was similar to that of an actomyosin preparation regulated by the reconstituted troponin complex. Comparison by the Ca2+-binding properties of cardiac Tn and the cardiac myofibrillar ATPase activity as a function of [Ca2+] and at millimolar [Mg2+] suggests that activation of the ATPase occurs over the same range of [Ca2+] where the Ca2+-specific site of cardiac Tn binds Ca2+.  相似文献   

15.
F Bolivar 《Gene》1978,4(2):121-136
In vitro recombinant DNA techniques were used to construct two new cloning vehicles, pBR324 and pBR235. These vectors, derived from plasmid pBR322, are relaxed replicating elements. Plasmid pBR324 carries the genes from pBR322 coding for resistance to the antibiotics ampicillin (Apr) and tetracycline (Tcr) and the colicin E1 structural and immunity genes derived from plasmid pMBI. Plasmid pBR325 carries the Apr and Tcr genes from pBR322 and the cloramphenicol resistance gene (Cmr) from phage P1Cm. In these plasmids the unique EcoRI restriction site present in the DNA molecule is located either in the colicin E1 structural gene (pBR324) or in the Cmr gene (pBR325). These vectors were constructed in order to have a single EcoRI site located in the middle of a structural gene which when inactivated would allow, for the easy selection of plasmid recombinant DNA molecules. These plasmids permit the molecular cloning and easy selection of EcoRI, BamHI, HindIII, PstI, HincII, SalI, (XamI), Smal, (XmaI), BglII and DpnII restriction generated DNA molecules.  相似文献   

16.
T D Xie  L Sun  H G Zhao  J A Fuchs    T Y Tsong 《Biophysical journal》1992,63(4):1026-1031
Electric parameters and solvent conditions are known to influence the efficiency of DNA transfection of cells by a pulsed electric field (PEF). A previous study (Neumann, E., M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider. 1982. EMBO (Eur. Mol. Biol. Organ.) J. 1:841-845) has indicated that DNA topology is also an important determinant. We report an investigation of the PEF induced uptake, stability, and expression of three different topological isomers, circular supercoiled (scDNA), circular relaxed (crDNA), and linearized (lnDNA) forms of the plasmid pBR322, by Escherichia coli strain JM105. Monomeric pBR322 prepared by the electroelution from an agarose gel was in the supercoiled form. Treatment of the scDNA with wheat germ topoisomerase I removed the superhelicity and the DNA assumed the relaxed circular form. Treatment of scDNA by a restriction endonuclease, EcoRI or Hind III, linearized the DNA. The MgCl2-dependent bindings of all three forms of DNA to the cell surface were indistinguishable. So was the PEF induced cell uptake. In contrast, the transfection efficiency (TE) for the scDNA and the crDNA were high (approximately 2 x 10(8) micrograms-1 DNA at neutral pH), whereas that for the lnDNA was approximately five orders of magnitude lower (less than 1 x 10(3) micrograms-1 DNA). Analysis by agarose gel electrophoresis indicated that the PEF loaded lnDNA was degraded by the host cell within 3 h. However, the loaded scDNA and the crDNA were stable and expressed in the cytoplasm. We conclude that first, the PEF induced DNA entry into E. coli did not depend on the topology of the DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Sequences representative of most of the bovine herpesvirus 1 (Cooper strain) DNa were cloned in the plasmid vector pBR322 at the HindIII site. EcoRI, HpaI, and BamHI restriction endonuclease sites were mapped in each of the cloned fragments, and this information was used to construct a restriction endonuclease cleavage site map of the entire viral genome for the four enzymes.  相似文献   

19.
The specific binding of IgG to jejunal brush borders was greatest at acidic pH, at neutral pH no specific binding occurred. Specific binding declined with age-no specific binding occurred in borders from 20-and 24-day-old animals. There was no specific binding of IgG to borders from ileal enterocytes. Human transferrin and bovine serum albumin did not bind specifically to borders. The affinity of binding (-Ka) and the receptors site numbers per border estimated for rat IgG were 18.64 X 10(6) M-1 to 3.53 X 10(6) sites; for human IgG, 25.06 X 10(6) M-1 to 3.30 X 10(6) sites; for bovine IgG, 10.48 X 10(6) M-1 to 2.11 X 10(6) sites and for sheep IgG, 7.26 X 10(6) M-1 to 2.34 X 10(6) sites.  相似文献   

20.
S Barlach  W Schumann 《FEBS letters》1983,157(1):119-123
Bacterial cells containing the ner gene of phage Mu inserted into pBR322 express a binding activity with specificity for the left-end EcoRI.C fragment of Mu DNA. Crude extracts containing either Mu repressor or ner protein have been used to localize binding sites on TaqI subfragments of the EcoRI.C fragment. There are at least 3 distinct binding sites for the Mu repressor and 1 binding site for the ner protein on the EcoRI. C fragment. The possible biological function of these binding sites is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号