首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutagenicity studies have been used to identify specific agents as potential carconogens or other human health hazards; however, they have been used minimally for risk assessment or in determining permissible levels of human exposure. The poor predictive value of in vitro mutagenesis tests for carcinogenic activity and a lack of mechanistic understanding of the roles of mutagens in the induction of specific cancers have made these tests unattractive for the purpose of risk assessment. However, the limited resources available for carcinogen testing and large number of chemicals which need to be evaluated necessitate the incorporation of more efficient methods into the evaluation process. In vivo genetic toxicity testing can be recommended for this purpose because in vivo assays incorporate the metabolic activation pathways that are relevant to humans. We propose the use of a multiple end-point in vivo comprehensive testing protocol (CTP) using rodents. Studies using sub-acute exposure to low levels of test agents by routes consistent with human exposure can be a useful adjunct to methods currently used to provide data for risk assessment. Evaluations can include metabolic and pharmacokinetic endpoints, in addition to genetic toxicity studies, in order to provide a comprehensive examination of the mechanism of toxicity of the agent. A parallelogram approach can be used to estimate effects in non-accessible human tissues by using data from accessible human tissues and analogous tissues in animals. A categorical risk assessment procedure can be used which would consider, in order of priority, genetic damage in man, genetic damage in animals that is highly relevant to disease outcome (mutation, chromosome damage), and data from animals that is of less certain relevance to disease. Action levels of environmental exposure would be determined based on the lowest observed effect levels or the highest observed no effect levels, using sub-acute low level exposure studies in rodents. As an example, the known genotoxic effects of benzene exposure at low levels in man and animals are discussed. The lowest observed genotoxic effects were observed at about 1–10 parts per million for man and 0.04–0.1 parts per million in subacute animal studies. If genetic toxicity is to achieve a prominent role in evaluating carcinogens and characterizing germ-cell mutagens, minimal testing requirements must be established to ascertain the risk associated with environmental mutagen exposure. The use of the in vivo approach described here should provide the information needed to meet this goal. In addition, it should allow truly epigenetic or non-genotoxic carcinogens to be distinguished from the genotoxic carcinogens that are not detected by in vitro methods.  相似文献   

2.
Multicellular tumor spheroids are widely used as in vitro models for testing of anticancer drugs. The advantage of this approach is that it can predict the outcome of a drug treatment on human cancer cells in their natural three‐dimensional environment without putting actual patients at risk. Several methods were utilized in the past to grow submillimeter‐size tumor spheroids. However, these small models are not very useful for preclinical studies of tumor ablation where the goal is the complete destruction of tumors that can reach several centimeters in diameter in the human body. Here, we propose a PDMS well method for large tumor spheroid culture. Our experiments with HepG2 hepatic cancer cells show that three‐dimensional aggregates of tumor cells with a volume as large as 44 mm3 can be grown in cylindrical PDMS wells after the initial culture of tumor cells by the hanging drop method. This is a 350 times more than the maximum volume of tumor spheroids formed inside hanging drops (0.125 mm3). © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1265–1269, 2013  相似文献   

3.
The European Scientific Committee on Cosmetics and Non-Food Products (SCCNFP) guideline for testing of hair dyes for genotoxic/mutagenic/carcinogenic potential has been reviewed. The battery of six in vitro tests recommended therein differs substantially from the batteries of two or three in vitro tests recommended in other guidelines. Our evaluation of the chemical types used in hair dyes and comparison with other guidelines for testing a wide range of chemical substances, lead to the conclusion that potential genotoxic activity may effectively be determined by the application of a limited number of well-validated test systems that are capable of detecting induced gene mutations and structural and numerical chromosomal changes. We conclude that highly effective screening for genotoxicity of hair dyes can be achieved by the use of three assays, namely the bacterial gene mutation assay, the mammalian cell gene mutation assay (mouse lymphoma tk assay preferred) and the in vitro micronucleus assay. These need to be combined with metabolic activation systems optimised for the individual chemical types. Recent published evidence [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggests that our recommended three tests will detect all known genotoxic carcinogens, and that increasing the number of in vitro assays further would merely reduce specificity (increase false positives). Of course there may be occasions when standard tests need to be modified to take account of special situations such as a specific pathway of biotransformation, but this should be considered as part of routine testing. It is clear that individual dyes and any other novel ingredients should be tested in this three-test battery. However, new products are formed on the scalp by reaction between the chemicals present in hair-dye formulations. Ideally, these should also be tested for genotoxicity, but at present such experiences are very limited. There is also the possibility that one component could mask the genotoxicity of another (e.g. by being more toxic), and so it is not practical at this time to recommend routine testing of complete hair-dye formulations as well. The most sensible approach would be to establish whether any reaction products within the hair-dye formulation penetrate the skin under normal conditions of use and test only those that penetrate at toxicologically relevant levels in the three-test in vitro battery. Recently published data [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggest the three-test battery will produce a significant number of false as well as real positives. Whilst we are aware of the desire to reduce animal experiments, determining the relevance of positive results in any of the three recommended in vitro assays will most likely have to be determined by use of in vivo assays. The bone marrow micronucleus test using routes of administration such as oral or intraperitoneal may be used where the objective is extended hazard identification. If negative results are obtained in this test, then a second in vivo test should be conducted. This could be an in vivo UDS in rat liver or a Comet assay in a relevant tissue. However, for hazard characterisation, tests using topical application with measurement of genotoxicity in the skin would be more appropriate. Such specific site-of-contact in vivo tests would minimise animal toxicity burden and invasiveness, and, especially for hair dyes, be more relevant to human routes of exposure, but there are not sufficient scientific data available to allow recommendations to be made. The generation of such data is encouraged.  相似文献   

4.
The European Scientific Committee on Cosmetics and Non-Food Products (SCCNFP) guideline for testing of hair dyes for genotoxic/mutagenic/carcinogenic potential has been reviewed. The battery of six in vitro tests recommended therein differs substantially from the batteries of two or three in vitro tests recommended in other guidelines. Our evaluation of the chemical types used in hair dyes and comparison with other guidelines for testing a wide range of chemical substances, lead to the conclusion that potential genotoxic activity may effectively be determined by the application of a limited number of well-validated test systems that are capable of detecting induced gene mutations and structural and numerical chromosomal changes.We conclude that highly effective screening for genotoxicity of hair dyes can be achieved by the use of three assays, namely the bacterial gene mutation assay, the mammalian cell gene mutation assay (mouse lymphoma tk assay preferred) and the in vitro micronucleus assay. These need to be combined with metabolic activation systems optimised for the individual chemical types.Recent published evidence [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1–256] suggests that our recommended three tests will detect all known genotoxic carcinogens, and that increasing the number of in vitro assays further would merely reduce specificity (increase false positives). Of course there may be occasions when standard tests need to be modified to take account of special situations such as a specific pathway of biotransformation, but this should be considered as part of routine testing.It is clear that individual dyes and any other novel ingredients should be tested in this three-test battery. However, new products are formed on the scalp by reaction between the chemicals present in hair-dye formulations. Ideally, these should also be tested for genotoxicity, but at present such experiences are very limited. There is also the possibility that one component could mask the genotoxicity of another (e.g. by being more toxic), and so it is not practical at this time to recommend routine testing of complete hair-dye formulations as well. The most sensible approach would be to establish whether any reaction products within the hair-dye formulation penetrate the skin under normal conditions of use and test only those that penetrate at toxicologically relevant levels in the three-test in vitro battery.Recently published data [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1–256] suggest the three-test battery will produce a significant number of false as well as real positives. Whilst we are aware of the desire to reduce animal experiments, determining the relevance of positive results in any of the three recommended in vitro assays will most likely have to be determined by use of in vivo assays. The bone marrow micronucleus test using routes of administration such as oral or intraperitoneal may be used where the objective is extended hazard identification. If negative results are obtained in this test, then a second in vivo test should be conducted. This could be an in vivo UDS in rat liver or a Comet assay in a relevant tissue. However, for hazard characterisation, tests using topical application with measurement of genotoxicity in the skin would be more appropriate. Such specific site-of-contact in vivo tests would minimise animal toxicity burden and invasiveness, and, especially for hair dyes, be more relevant to human routes of exposure, but there are not sufficient scientific data available to allow recommendations to be made. The generation of such data is encouraged.  相似文献   

5.
In this study, we evaluated four methods to separate and purify Toxoplasma gondii tachyzoites from in vivo and in vitro culture systems, including trypsin digestion, purification with a 3-μm filter, CF-11 cellulose purification, and Percoll purification. Our results indicate that both purification with a 3-μm filter and CF11 cellulose purification methods remove leukocytes or HeLa cells, and can therefore be used as candidate methods for the purification of in vivo and in vitro culture products. Trypsin digestion had a high tachyzoite recovery rate, but 22.35% of leukocytes and 69.64% of HeLa cells remained in the purified products. Percoll solution [30% (v/v)] also had a high tachyzoite recovery rate, but 3.44% of leukocytes and 61.61% of HeLa cells remained in the purified products. The 40% Percoll solution was also a candidate method for purifying tachyzoites from in vivo culture products, with a 65.45% tachyzoite recovery rate and without leukocytes.  相似文献   

6.
As demonstrated in several validation studies, the dermal phototoxic potential of chemicals in humans can be effectively assessed by in vitro methods. The core of these methods is to monitor dose-response curves of a chemical in the absence and presence of light, to quantify the difference between these two curves by appropriate measures (either the photo-irritancy factor [PIF], or the mean photo effect [MPE]), and to use these measures as predictors of in vivo phototoxicity. We present new concentration-response analysis software for in vitro phototoxicity testing, which runs on current personal computers, and takes into account all the limitations identified when using a former program. We also demonstrate the validity and robustness of this new software by applying it retrospectively to all data available from two phases of the EU/COLIPA validation trial for the 3T3 neutral red update in vitro phototoxicity test. Some frequently raised questions pertaining to the use of prediction models in phototoxicity testing are addressed, including: the necessity of using prediction models based on a cut-off; whether it is justifiable to use sharp prediction cut-off values; whether there is a biostatistical justification for the highest concentration of the test chemical; and whether repeated testing of a chemical is required.  相似文献   

7.
Novel technologies that include recombinant pathogens and rapid detection methods are contributing to the development of drugs for neglected diseases. Recently, the results from the first high throughput screening (HTS) to test compounds for activity against Trypanosoma cruzi trypomastigote infection of host cells were reported. We have selected 23 compounds from the hits of this HTS, which were reported to have high anti-trypanosomal activity and low toxicity to host cells. These compounds were highly purified and their structures confirmed by HPLC/mass spectrometry. The compounds were tested in vitro, where about half of them confirmed the anti-T. cruzi activity reported in the HTS, with IC50 values lower than 5 μM. We have also adapted a rapid assay to test anti-T. cruzi compounds in vivo using mice infected with transgenic T. cruzi expressing luciferase as a model for acute infection. The compounds that were active in vitro were also tested in vivo using this assay, where we found two related compounds with a similar structure and low in vitro IC50 values (0.11 and 0.07 μM) that reduce T. cruzi infection in the mouse model more than 90% after five days of treatment. Our findings evidence the benefits of novel technologies, such as HTS, for the drug discovery pathway of neglected diseases, but also caution about the need to confirm the results in vitro. We also show how rapid methods of in vivo screening based in luciferase-expressing parasites can be very useful to prioritize compounds early in the chain of development.  相似文献   

8.
Tonnage-based information requirements are specified in the proposal on the regulation on the Registration, Evaluation and Authorisation of Chemicals (REACH) in the European Union. The hazard assessment for toxic endpoints should be performed by using a tiered approach, i.e. as an information strategy (IS), starting with an evaluation of all of the data already available, including animal in vivo and in vitro data, and human evidence and case reports, as well as data from (Quantitative)-Structure Activity Relationships ([Q]SARs) or read-across, before any further testing is suggested. To contribute to the implementation of the REACH system, the Nordic countries launched two projects: 1) a review of currently used testing strategies, including a comparison with the REACH requirements; and 2) the development of detailed ISs for skin and eye irritation/corrosion. The review showed that the ISs and classification criteria for the selected endpoints are inconsistent in many cases. In the classification criteria, human data and in vivo test results are usually the prerequisites. Other types of information, such as data from in vitro studies, can sometimes be used, but usually as supportive evidence only. This differs from the REACH ISs, where QSARs, read-across and in vitro testing are important elements. In the other part of the project, an IS for skin and eye irritation/corrosion was proposed. The strategy was "tested" by using four high production volume (HPV) chemicals: hydrogen peroxide, methyl tertiary-butyl ether (MTBE), trivalent chromium, and diantimony trioxide, but only MTBE and trivalent chromium are dealt with in this paper. The "test" revealed that in vivo data, human case reports and physical-chemical data were available and could be used in the evaluation. Classification could be based on the proposed IS and the existing data in all cases, except for the eye irritation/corrosion of trivalent chromium. Weight-of-evidence analysis appeared to be a useful step in the ISs proposed, and including it in the REACH strategies should be considered. For these chemicals, few in vitro and (Q)SAR data were available--more of these data would be generated, if the relevant guidance and legislation on classification were updated.  相似文献   

9.
We have described the differentiation in vitro of clonal pluripotent teratocarcinoma stem cells derived from isolated single cells. By using solvent-resistant plastic petri dishes as a substratum for cell growth, it is possible to prepare histological sections of the cultures which can be compared with sections of teratocarcinomas formed in vivo by the same cells. Our results indicate that almost all of the cell types found in the tumors are formed in vitro, including cartilage, keratinizing epithelium, pigmented epithelium, neural tissue, and muscle. The cells are organized in a tissue structure which is remarkably similar to that found in vivo.  相似文献   

10.
In the Saccharomyces cerevisiae double-stranded RNA virus, programmed -1 ribosomal frameshifting is responsible for translation of the second open reading frame of the essential viral RNA. A typical slippery site and downstream pseudoknot are necessary for this frameshifting event, and previous work has demonstrated that ribosomes pause over the slippery site. The translational intermediate associated with a ribosome paused at this position is detected, and, using in vitro translation and quantitative heelprinting, the rates of synthesis, the ribosomal pause time, the proportion of ribosomes paused at the slippery site, and the fraction of paused ribosomes that frameshift are estimated. About 10% of ribosomes pause at the slippery site in vitro, and some 60% of these continue in the -1 frame. Ribosomes that continue in the -1 frame pause about 10 times longer than it takes to complete a peptide bond in vitro. Altering the rate of translational initiation alters the rate of frameshifting in vivo. Our in vitro and in vivo experiments can best be interpreted to mean that there are three methods by which ribosomes pass the frameshift site, only one of which results in frameshifting.  相似文献   

11.
Nanomaterials display novel properties to which most toxicologists have not consciously been exposed before the advent of their practical use. The same properties, small size and particular shape, large surface area and surface activity, which make nanomaterials attractive in many applications, may contribute to their toxicological profile. This review describes what is known about genotoxicity investigations on nanomaterials published in the openly available scientific literature to-date. The most frequently used test was the Comet assay: 19 studies, 14 with positive outcome. The second most frequently used test was the micronucleus test: 14 studies, 12 of them with positive outcome. The Ames test, popular with other materials, was less frequently used (6 studies) and was almost always negative, the bacterial cell wall possibly being a barrier for many nanomaterials. Recommendations for improvements emerging from analyzing the reports summarized in this review are: Know what nanomaterial has been tested (and in what form); Consider uptake and distribution of the nanomaterial; Use standardized methods; Recognize that nanomaterials are not all the same; Use in vivo studies to correlate in vitro results; Take nanomaterials specific properties into account; Learn about the mechanism of nanomaterials genotoxic effects. It is concluded that experiences with other, non-nano, substances (molecules and larger particles) taught us that mechanisms of genotoxic effects can be diverse and their elucidation can be demanding, while there often is an immediate need to assess the genotoxic hazard. Thus a practical, pragmatic approach is the use of a battery of standard genotoxicity testing methods covering a wide range of mechanisms. Application of these standard methods to nanomaterials demands adaptations and the interpretation of results from the genotoxicity tests may need additional considerations. This review should help to improve standard genotoxicity testing as well as investigations on the underlying mechanism and the interpretation of genotoxicity data on nanomaterials.  相似文献   

12.
Ursolic acid (UA) has been recently proposed as a potential candidate for the treatment of muscle wasting conditions because of its protein sparring/anabolic effects. Despite this finding, it is unknown whether this response is the consequence of a direct effect on the muscle fibre or if it is mediated by neural or other systemic factors. In the present study, we sought to determine if UA has direct effects in skeletal muscle cells, whether it can increase myoblast proliferation and whether UA can become myotoxic at higher doses. Our results demonstrate that UA directly promoted protein accretion in cultured myotubes but did not modulate myoblast proliferation. At higher doses, UA compromised cell viability in both myoblasts and myotubes. We conclude that the anabolic properties of UA seen in vivo and in vitro are likely a direct effect on the muscle cell, but at higher doses, the benefits decline in favour of a myotoxic outcome.  相似文献   

13.
The ability of monoclonal antibodies (mAbs) to target specific antigens with high precision has led to an increasing demand to generate them for therapeutic use in many disease areas. Historically, the discovery of therapeutic mAbs has relied upon the immunization of mammals and various in vitro display technologies. While the routine immunization of rodents yields clones that are stable in serum and have been selected against vast arrays of endogenous, non-target self-antigens, it is often difficult to obtain species cross-reactive mAbs owing to the generally high sequence similarity shared across human antigens and their mammalian orthologs. In vitro display technologies bypass this limitation, but lack an in vivo screening mechanism, and thus may potentially generate mAbs with undesirable binding specificity and stability issues. Chicken immunization is emerging as an attractive mAb discovery method because it combines the benefits of both in vivo and in vitro display methods. Since chickens are phylogenetically separated from mammals, their proteins share less sequence homology with those of humans, so human proteins are often immunogenic and can readily elicit rodent cross-reactive clones, which are necessary for in vivo proof of mechanism studies. Here, we compare the binding characteristics of mAbs isolated from chicken immunization, mouse immunization, and phage display of human antibody libraries. Our results show that chicken-derived mAbs not only recapitulate the kinetic diversity of mAbs sourced from other methods, but appear to offer an expanded repertoire of epitopes. Further, chicken-derived mAbs can bind their native serum antigen with very high affinity, highlighting their therapeutic potential.  相似文献   

14.
Precise identification of target sites of RNA-binding proteins (RBP) is important to understand their biochemical and cellular functions. A large amount of experimental data is generated by in vivo and in vitro approaches. The binding preferences determined from these platforms share similar patterns but there are discernable differences between these datasets. Computational methods trained on one dataset do not always work well on another dataset. To address this problem which resembles the classic “domain shift” in deep learning, we adopted the adversarial domain adaptation (ADDA) technique and developed a framework (RBP-ADDA) that can extract RBP binding preferences from an integration of in vivo and vitro datasets. Compared with conventional methods, ADDA has the advantage of working with two input datasets, as it trains the initial neural network for each dataset individually, projects the two datasets onto a feature space, and uses an adversarial framework to derive an optimal network that achieves an optimal discriminative predictive power. In the first step, for each RBP, we include only the in vitro data to pre-train a source network and a task predictor. Next, for the same RBP, we initiate the target network by using the source network and use adversarial domain adaptation to update the target network using both in vitro and in vivo data. These two steps help leverage the in vitro data to improve the prediction on in vivo data, which is typically challenging with a lower signal-to-noise ratio. Finally, to further take the advantage of the fused source and target data, we fine-tune the task predictor using both data. We showed that RBP-ADDA achieved better performance in modeling in vivo RBP binding data than other existing methods as judged by Pearson correlations. It also improved predictive performance on in vitro datasets. We further applied augmentation operations on RBPs with less in vivo data to expand the input data and showed that it can improve prediction performances. Lastly, we explored the predictive interpretability of RBP-ADDA, where we quantified the contribution of the input features by Integrated Gradients and identified nucleotide positions that are important for RBP recognition.  相似文献   

15.
The introduction of safe and effective new medicines is proving ever more difficult, a problem arguably due at least in part to over-reliance on experimental animal-based test systems. In light of the increasing awareness of the lack of predictiveness of such non-human approaches, the necessity to focus on human-based test methods is clear. There has been considerable progress in human in vivo (microdosing) and in silico approaches, primarily to identify ADMET issues, however, in vitro functional studies using human tissues are receiving inadequate attention. The potential scope of human tissue-based research is considerable, but much methodological development is required, which necessitates an increased willingness on the part of the Pharma industry to support it. This approach also requires considerably improved access to the cells and tissues themselves. While current acquisition is almost exclusively from surgery and post mortem, the range of tissue types, the quantity, quality and frequency of supply will remain inadequate to support human tissue as a key component of pre-clinical efficacy and safety testing. Additional routine access to non-transplantable tissues from organ donors for research purposes would be of inestimable value, but in order to realise this, true collaboration will be required between NHS, the Pharma and biotech industries, and the general public.  相似文献   

16.
Agrochemicals must undergo numerous toxicological tests before registration. One of these experiments is the examination of eye irritation potential. To get knowledge about eye irritation, recently only the in vivo Draize-test is accepted, which is one of the most criticized methods because of the injuries inflicted on the test animals. Several in vitro methods have been used to investigate the toxicity of potential eye irritants with a view to replacing in vivo eye irritation testing. In the HET-CAM test chemicals are placed in direct contact with chorioallantoic membrane of the hen's egg. The occurrence of vascular injury or coagulation in response to a compound is the basis for employing this technique as an indication of the likelihood that a chemical would damage mucous membranes (especially the eye) in vivo. In our studies comparative screening was performed with a set of agrochemicals to establish paralell data on in vitro (HET-CAM) and in vivo (Draize) results in case of 6 agrochemicals. The solutions to be tested are added to the membrane and left in contact for 5 minutes and the membrane is examined for vascular damage at set time periods. Irritancy is scored according to the severity and speed at which damage occurs providing an indication of the likely irritant effect of the compound. Our study showed good correlation between results obtained by the HET-CAM test and those of the Draize rabbit eye test most cases. The present form of the HET-CAM test can be proposed as a pre-screen method of eye irritation tests.  相似文献   

17.
Probiotics are defined as live microorganisms, which when administered in adequate amount confer a health benefit to the host. Most of studied or commercialized probiotics contain bacteria and very few of them present yeast in its composition. In this last case, the microorganisms almost always belong to Saccharomyces genus. In the present study, it was of interest to screen among 103 non-Saccharomyces yeasts a candidate for probiotic by using in vitro and in vivo criteria. In vitro assays included growth at 37°C and production of antagonistic compounds against enteropathogenic indicators, and the in vivo assays evaluated the colonization ability of mouse gastrointestinal tract without pathologic consequences and the protective ability in mice experimentally challenged with Clostridium difficile. In conclusion, Pichia kluyveri strain 898 showed to be a potential candidate for probiotic use, based on the criteria cited above, particularly as demonstrated by its protective effect against experimental infection in mice. Interestingly, an in vivo inhibition against C. difficile observed in the animal models did not correlate with the results obtained with the in vitro assays.  相似文献   

18.
19.
20.
Biocompatibility testing of branched and linear polyglycidol   总被引:2,自引:0,他引:2  
Polyglycidols are flexible hydrophilic polyethers that are potentially biocompatible polymers based on their similarities to the well-studied poly(ethyleneglycol). Polyglycidols can be prepared as branched or linear polymers by suitable synthetic methods. Biocompatibility testing of these polymers conducted in vitro as well as in vivo are reported here. The in vitro studies included hemocompatibility testing for effects on coagulation (PT and APTT), complement activation, red blood cell aggregation, and whole blood viscosity measurements. In vitro cytotoxicity experiments were also conducted. The results were compared with some of the common biocompatible polymers already in human use. Results from these studies show that polyglycidols are highly biocompatible. Hyperbranched polyglycidols were found to be well tolerated by mice even when injected in high doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号