首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selection and mating principles in a closed breeding population (BP) were studied by computer simulation. The BP was advanced, either by random assortment of mates (RAM), or by positive assortative mating (PAM). Selection was done with high precision using clonal testing. Selection considered both genetic gain and gene diversity by "group-merit selection", i.e. selection for breeding value weighted by group coancestry of the selected individuals. A range of weights on group coancestry was applied during selection to vary parent contributions and thereby adjust the balance between gain and diversity. This resulted in a series of scenarios with low to high effective population sizes measured by status effective number. Production populations (PP) were selected only for gain, as a subset of the BP. PAM improved gain in the PP substantially, by increasing the additive variance (i.e. the gain potential) of the BP. This effect was more pronounced under restricted selection when parent contributions to the next generation were more balanced with within-family selection as the extreme, i.e. when a higher status effective number was maintained in the BP. In that case, the additional gain over the BP mean for the clone PP and seed PPs was 32 and 84% higher, respectively, for PAM than for RAM in generation 5. PAM did not reduce gene diversity of the BP but increased inbreeding, and in that way caused a departure from Hardy-Weinberg equilibrium. The effect of inbreeding was eliminated by recombination during the production of seed orchard progeny. Also, for a given level of inbreeding in the seed orchard progeny or in a mixture of genotypes selected for clonal deployment, gain was higher for PAM than for RAM. After including inbreeding depression in the simulation, inbreeding was counteracted by selection, and the enhancement of PAM on production population gain was slightly reduced. In the presence of inbreeding depression the greatest PP gain was achieved at still higher levels of status effective number, i.e. when more gene diversity was conserved in the BP. Thus, the combination of precise selection and PAM resulted in close to maximal short-term PP gain, while conserving maximal gene diversity in the BP.Communicated by O. Savolainen  相似文献   

2.
Minimum coancestry mating with a maximum of one offspring per mating pair (MC1) is compared with random mating schemes for populations with overlapping generations. Optimum contribution selection is used, whereby ΔF is restricted. For schemes with ΔF restricted to 0.25% per year, 256 animals born per year and heritability of 0.25, genetic gain increased with 18% compared with random mating. The effect of MC1 on genetic gain decreased for larger schemes and schemes with a less stringent restriction on inbreeding. Breeding schemes hardly changed when omitting the iteration on the generation interval to find an optimum distribution of parents over age-classes, which saves computer time, but inbreeding and genetic merit fluctuated more before the schemes had reached a steady-state. When bulls were progeny tested, these progeny tested bulls were selected instead of the young bulls, which led to increased generation intervals, increased selection intensity of bulls and increased genetic gain (35% compared to a scheme without progeny testing for random mating). The effect of MC1 decreased for schemes with progeny testing. MC1 mating increased genetic gain from 11–18% for overlapping and 1–4% for discrete generations, when comparing schemes with similar genetic gain and size.  相似文献   

3.
Development of selection methods that optimises selection differential subject to a constraint on the increase of inbreeding (or coancestry) in a population is an important part of breeding programmes. One such method that has received much attention in animal breeding is the optimum contribution (OC) dynamic selection method. We implemented the OC algorithm and applied it to a diallel progeny trial of Pinus sylvestris L. (Scots pine) focussing on two traits (total tree height and stem diameter). The OC method resulted in a higher increase in genetic gain (8–30%) compared to the genetic gain achieved using standard restricted selection method at the same level of coancestry constraint. Genetic merit obtained at two different levels of restriction on coancestry showed that the benefit of OC was highest when restriction was strict. At the same level of genetic merit, OC decreased coancestry with 56 and 39% for diameter and height, respectively, compared to the level of coancestry obtained using unrestricted truncation selection. Inclusion of a dominance term in the statistical model resulted in changes in contribution rank of trees with 7 and 13% for diameter and height, respectively, compared to results achieved by using a pure additive model. However, the genetic gain was higher for the pure additive model than for the model including dominance for both traits.  相似文献   

4.
A common garden study was conducted with seedlings of the interior spruce complex [Picea glauca (Monch) Voss and Picea. engelmannii Parry and their hybrids], comparing seedling height growth using open-pollinated orchard families and wild-stand (WS) families from the same breeding zone. Phenotypic variances of three bulked orchard seedlots and three WS seedlots did not differ. Orchard seedlots had generally higher within-family variance components than WS families. To examine year-to-year variation in orchard seedlots, three seedlots, composed of the same 18 orchard families collected in three different years, were evaluated in the same common garden study. Family mean heights within the three crop years were statistically not different; however, large rank changes in family mean heights and family variances were observed. This study shows that orchard seed derived from breeding programs does not reduce phenotypic variability in commercial plantations. In spite of the moderate to high selection intensities applied to the selection of orchard parents, large amounts of phenotypic variation are maintained because of the lack of coancestry in the orchard pollen cloud and large temporal variation in mating success and fecundity of the various parents contributing to the crop.  相似文献   

5.

Background

Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity.

Methods

The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences.

Results

Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data.

Conclusions

The use of genomic estimated breeding values increased genetic gain in optimal contribution selection. Genomic estimated breeding values were more accurate and showed more within-family variation, which led to higher genetic gains for the same restriction on inbreeding. Using genomic relationships to restrict inbreeding provided no additional gain, except in the case of very large full-sib families.  相似文献   

6.

Background

The combination of optimized contribution dynamic selection and various mating schemes was investigated over seven generations for a typical tree breeding scenario. The allocation of mates was optimized using a simulated annealing algorithm for various object functions including random mating (RM), positive assortative mating (PAM) and minimization of pair-wise coancestry between mates (MCM) all combined with minimization of variance in family size and coancestry. The present study considered two levels of heritability (0.05 and 0.25), two restrictions on relatedness (group coancestry; 1 and 2%) and two maximum permissible numbers of crosses in each generation (100 and 400). The infinitesimal genetic model was used to simulate the genetic architecture of the trait that was the subject of selection. A framework of the long term genetic contribution of ancestors was used to examine the impacts of the mating schemes on population parameters.

Results

MCM schemes produced on average, an increased rate of genetic gain in the breeding population, although the difference between schemes was small but significant after seven generations (up to 7.1% more than obtained with RM). In addition, MCM reduced the level of inbreeding by as much as 37% compared with RM, although the rate of inbreeding was similar after three generations of selection. PAM schemes yielded levels of genetic gain similar to those produced by RM, but the increase in the level of inbreeding was substantial (up to 43%).

Conclusion

The main reason why MCM schemes yielded higher genetic gains was the improvement in managing the long term genetic contribution of founders in the population; this was achieved by connecting unrelated families. In addition, the accumulation of inbreeding was reduced by MCM schemes since the variance in long term genetic contributions of founders was smaller than in the other schemes. Consequently, by combining an MCM scheme with an algorithm that optimizes contributions of the selected individuals, a higher long term response is obtained while reducing the risk within the breeding program.  相似文献   

7.
Switchgrass (Panicum virgatum L.) is a candidate for cellulosic bioenergy feedstock development. Because biomass yield is the most important biological factor limiting the commercial development and deployment of switchgrass as a cellulosic bioenergy feedstock efforts must be undertaken to develop improved cultivars. The objectives of this study were (1) to conduct two cycles of within-family selection for increased biomass yield in WS4U switchgrass and (2) to simultaneously evaluate progress from selection relative to the mean of the original WS4U population. Each of the 150 WS4U families was subjected to phenotypic selection for vigor, seed production, and disease resistance. The mean of all families increased relative to the original WS4U population by 0.36 Mg ha?1 cycle?1 for biomass yield and 3.0% cycle?1 for ground cover. Gains were uniform across two diverse evaluation locations, indicating that selection gains were robust relative to some variation in Hardiness Zone and soil type. Two cycles of within-family selection led to a homogenization of the diverse families, creating novel recombinations and reducing the family genetic variance to near zero. It is hypothesized that selection and recombination has led to replication of favorable alleles across pedigrees with differing genetic backgrounds, increasing the likelihood of including these favorable alleles in the progeny of future selections. The rate of genetic progress is expected to increase in future cycles of selection with a combination of within-family phenotypic selection and half-sib progeny testing of selected families.  相似文献   

8.

Background

The risk of long-term unequal contribution of mating pairs to the gene pool is that deleterious recessive genes can be expressed. Such consequences could be alleviated by appropriately designing and optimizing breeding schemes i.e. by improving selection and mating procedures.

Methods

We studied the effect of mating designs, random, minimum coancestry and minimum covariance of ancestral contributions on rate of inbreeding and genetic gain for schemes with different information sources, i.e. sib test or own performance records, different genetic evaluation methods, i.e. BLUP or genomic selection, and different family structures, i.e. factorial or pair-wise.

Results

Results showed that substantial differences in rates of inbreeding due to mating design were present under schemes with a pair-wise family structure, for which minimum coancestry turned out to be more effective to generate lower rates of inbreeding. Specifically, substantial reductions in rates of inbreeding were observed in schemes using sib test records and BLUP evaluation. However, with a factorial family structure, differences in rates of inbreeding due mating designs were minor. Moreover, non-random mating had only a small effect in breeding schemes that used genomic evaluation, regardless of the information source.

Conclusions

It was concluded that minimum coancestry remains an efficient mating design when BLUP is used for genetic evaluation or when the size of the population is small, whereas the effect of non-random mating is smaller in schemes using genomic evaluation.  相似文献   

9.
Summary Progeny testing and selection of forage grasses by means of growing half-sib (HS) families from openpollination and polycross have been considered from theoretical and practical points of view. Special attention has been paid to the genetic variation within half-sib families, which is expected to be large as compared to the genetic variation between families. Based on observations of individual plants within plots, the environmental component of the variation is expected to be large and nonestimatable. The results of an experiment in meadow fescue (Festuca pratensis Huds.) are presented. In this experiment, randomly selected individual plants within HS families were cloned and laid out in randomized blocks. For the characters observed (earliness and raw matter yield) no significant variance component for dominance was found. The highly significant additive component estimated for earliness, as well as for yield, after each of three cuts and in total were about three times as large within as between families, as expected from the theoretical considerations. The estimated response to selection was much higher for a combination of between- and within-family selection as compared to free clone or family mean selection alone. It is suggested that a program for progeny testing and selection in a base population of perennial forage grasses should start with an experiment in which a large number of randomly selected parental clones and a fixed number of clones from each of the half-sib families derived from the mother genotypes are grown simultaneously. The selected clones within superior families could later on be further cloned, placed in a polycross field, and the new HS-families could be sown in ordinary field trials at various locations for further selection.  相似文献   

10.

Background

Genomic selection methods require dense and widespread genotyping data, posing a particular challenge if both sexes are subject to intense selection (e.g., aquaculture species). This study focuses on alternative low-cost genomic selection methods (IBD-GS) that use selective genotyping with sparse marker panels to estimate identity-by-descent relationships through linkage analysis. Our aim was to evaluate the potential of these methods in selection programs for continuous traits measured on sibs of selection candidates in a typical aquaculture breeding population.

Methods

Phenotypic and genomic data were generated by stochastic simulation, assuming low to moderate heritabilities (0.10 to 0.30) for a Gaussian trait measured on sibs of the selection candidates in a typical aquaculture breeding population that consisted of 100 families (100 training animals and 20 selection candidates per family). Low-density marker genotype data (~ 40 markers per Morgan) were used to trace genomic identity-by-descent relationships. Genotyping was restricted to selection candidates from 30 phenotypically top-ranking families and varying fractions of their phenotypically extreme training sibs. All phenotypes were included in the genetic analyses. Classical pedigree-based and IBD-GS models were compared based on realized genetic gain over one generation of selection.

Results

Genetic gain increased substantially (13 to 32%) with IBD-GS compared to classical selection and was greatest with higher heritability. Most of the extra gain from IBD-GS was obtained already by genotyping the 5% phenotypically most extreme sibs within the pre-selected families. Additional genotyping further increased genetic gains, but these were small when going from genotyping 20% of the extremes to all phenotyped sibs. The success of IBD-GS with sparse and selective genotyping can be explained by the fact that within-family haplotype blocks are accurately traced even with low-marker densities and that most of the within-family variance for normally distributed traits is captured by a small proportion of the phenotypically extreme sibs.

Conclusions

IBD-GS was substantially more effective than classical selection, even when based on very few markers and combined with selective genotyping of small fractions of the population. The study shows that low-cost GS programs can be successful by combining sparse and selective genotyping with pedigree and linkage information.  相似文献   

11.
A within-family marker-assisted selection scheme was designed for typical aquaculture breeding schemes, where most traits are recorded on sibs of the candidates. Here, sibs of candidates were tested for the trait and genotyped to establish genetic marker effects on the trait. BLUP breeding values were calculated, including information of the markers (MAS) or not (NONMAS). These breeding values were identical for all family members in the NONMAS schemes, but differed between family members in the MAS schemes, making within-family selection possible. MAS had up to twice the total genetic gain of the corresponding NONMAS scheme. MAS was somewhat less effective when heritability increased from 0.06 to 0.12 or when the frequency of the positive allele was < 0.5. The relative efficiency of MAS was higher for schemes with more candidates, because of larger fullsib family sizes. MAS was also more efficient when male:female mating ratio changed from 1:1 to 1:5 or when the QTL explained more of the total genetic variation. Four instead of two markers linked to the QTL increased genetic gain somewhat. There was no significant difference in polygenic genetic gain between MAS and NONMAS for most schemes. The rates of inbreeding were lower for MAS than NON-MAS schemes, because fewer full-sibs were selected by MAS.  相似文献   

12.
From 2012 to 2018, 223 180 Montbéliarde females were genotyped in France and the number of newly genotyped females increased at a rate of about 33% each year. With female genotyping information, farmers have access to the genomic estimated breeding values of the females in their herd and to their carrier status for genetic defects or major genes segregating in the breed. This information, combined with genomic coancestry, can be used when planning matings in order to maximize the expected on-farm profit of future female offspring. We compared different mating allocation approaches for their capacity to maximize the expected genetic gain while limiting expected progeny inbreeding and the probability to conceive an offspring homozygous for a lethal recessive allele. Three mate allocation strategies (random mating (RAND), sequential mating (gSEQ€) and linear programing mating (gLP€)) were compared on 160 actual Montbéliarde herds using male and female genomic information. Then, we assessed the benefit of using female genomic information by comparing matings planned using only female pedigree information with the equivalent strategy using genomic information. We measured the benefit of adding genomic expected inbreeding and risk of conception of an offspring homozygous for a lethal recessive allele to Net merit in mating plans. The influence of three constraints was tested: by relaxing the constraint on availability of a particular semen type (sexed or conventional) for bulls, by adding an upper limit of 8.5% coancestry between mate pairs or by using a more stringent maximum use of a bull in a herd (5% vs 10%). The use of genomic information instead of pedigree information improved the mate allocation method in terms of progeny expected genetic merit, genetic diversity and risk to conceive an offspring homozygous for a lethal recessive allele. Optimizing mate allocation using linear programming and constraining coancestry to a maximum of 8.5% per mate pair reduced the average coancestry with a small impact on expected Net Merit. In summary, for male and female selection pathways, using genomic information is more efficient than using pedigree information to maximize genetic gain while constraining the expected inbreeding of the progeny and the risk to conceive an offspring homozygous for a lethal recessive allele. This study also underlines the key role of semen type (sexed vs conventional) and the associated constraints on the mate allocation algorithm to maximize genetic gain while maintaining genetic diversity and limiting the risk to conceive an offspring homozygous for a lethal recessive allele.  相似文献   

13.
 Genetic relationship within a population can be measured by average coancestry. This can also be expressed as an effective number which represents the relative genetic diversity of the population. The goal of breeding can be formulated to maximise genetic value minus average coancestry times a constant (the “penalty constant”). An iterative search algorithm can then be used to find the best selections for meeting this goal. Two such algorithms, one for a fixed number of selections and the other for a variable optimum number, were applied to select a mixture of field-tested Norway spruce clones with known parents. The results were compared with those from the conventional method of restricting parental contributions to the selected population as a means to control diversity. Coancestry-adjusted selection always yielded more gain than restricted selection at a given effective population size (except under circumstances where the methods were equivalent). Expressed another way, at any given level of gain, coancestry-adjusted selection maintained a larger effective population size than did restricted selection. The relative superiority of coancestry-adjusted selection declined when the effective population size approached the lowest value, that at which no penalty or restriction was applied. The method was extended by the second search algorithm to optimise the selected number of clones. The optimal number of clones can be rather large when diversity is heavily valued, but the reduction in genetic gain becomes large. Received: 7 April 1997 / Accepted: 9 June 1997  相似文献   

14.
R P Wei  F C Yeh  D Lindgren 《Génome》1997,40(1):1-8
Imposition of restrictions on number of individuals selected from a family and number of families from which superior individuals are selected could markedly alter the consequences of individual and combined-index selection. Predicted genetic gain and diversity measured as status number following selection were studied to draw general conclusions. Selection and its prediction were applied to two sets of real-life data. Theoretical prediction gave results close to those from factual selection. Gain and status number varied with initial family number and size, sib type, heritability, selection proportion, restriction type and intensity, and selection criteria. Proper restriction on the number of individuals selected can control the reduction of status number to an acceptable level, particularly when breeding values are used as the selection criterion. Restriction on the number of families selected would effectively improve the gain efficiency of selection based on phenotypic values. Choosing combinations of both restrictions might produce higher gain without the loss of status number. Given constant population size, family number should be large enough to ensure that restricted selection will yield higher gain and status number.  相似文献   

15.
Summary Six simulated progeny test field designs in combination with three within-family selection systems were tested on three loblolly pine (Pinus taeda L.) progeny test sites in southeastern Oklahoma and southwestern Arkansas, to compare genetic gains for the single trait, height. Residual deviations obtained by subtraction of family and plantation mean effects for each plantation were combined with simulated genetic effects with known family variance structure. The simulated genetic populations, arranged in the following progeny test field designs — large square or almost square plots, five- and ten-tree row plots, five-tree noncontiguous plots, two tree row plots, and single-tree plots — were superimposed on the residual data for each plantation. Within-family selection methods based on deviations from block means, deviations from neighborhood means and deviations from plot means were built into the model. Realized genetic gain attained by each design — selection system combination was compared with the genetic gain theoretically possible if selection accuracy were perfect, and with expected gain estimated using the general linear model. In general, average realized genetic gain compared well with expected gain. Differences between designs with large versus small plots were generally lower than expected, although the single-tree plot design always yielded highest realized gain. Realized gain was generally higher than expected when within-family selection was based on deviations from block or neighborhood means, but equal to or lower than expected when selection was based on deviations from plot means.  相似文献   

16.
The management of a genetic improvement program is based on the knowledge of the genetic parameters and their relationships to determine the genetic gains. Knowledge of the coefficient of coancestry (θ) is a requirement for efficient progeny testing scheme and for estimating additive variance components for any quantitative trait. When using open-pollinated families, most authors assume that the seedlings are related as half-sibs, but this is not always true. Our aim was to estimate a mean value of the coancestry coefficient of the families present in a maritime pine Pinus pinaster Ait. (maritime or cluster pine) progeny trial originating from seed collected in a clonal seed orchard and to study how deviations from the standard assumption of θ = 0.125 affect heritability estimations. Five highly polymorphic microsatellite markers were scored in 125 offspring from a subsample of five families from the progeny trial. The mean value of the coancestry coefficient of the families present in this progeny trial was 0.130. Differences between the unadjusted and adjusted heritability estimates were more pronounced in wood density (0.609 and 0.586, respectively) than in diameter (0.166 and 0.154, respectively). We conclude that in the trial, the associated error in heritability estimates due to the inclusion of full-sibs, when assuming a standard coefficient of relationship among open-pollinated sibs of 0.250, was low and that this result is robust with respect to the number of families sampled, given unbiased estimates of average relationship among offspring within sib families.  相似文献   

17.
Sublines are used in the third-generation breeding and testing of coastal Douglas-fir in British Columbia, with the original intent of selecting only one genotype per subline for production populations (e.g., seed orchards) to eliminate relatedness among parents (therein called “1/SL”). We evaluated three additional selection scenarios that did not consider the subline structure. One of the scenarios strictly selected on the basis of the highest breeding values of the trees (“TOP”); another scenario used the TOP selections, but assigned the number of ramets per selection proportionally to the selection breeding value (“LIND”); lastly, a simulated annealing technique was applied to maximize gain under explicit constraints on coancestry (“OPTS”). All three alternative selection scenarios resulted in some relatedness and coancestry among selections, but the last two provided increases in average breeding values compared to those obtained by the 1/SL scenario. Effective population sizes (and consequently inbreeding coefficients) varied among the three selection scenarios. Effects of the various selections on merchantable volume at rotation age were determined using a linear regression model based on an individual tree model (TASS), which was first run to determine the relationship between merchantable volume and inbreeding (f). LIND and TOP selections yielded the highest breeding values but, due to the increased coancestry among selections, paid a penalty in the merchantable volume determination. OPTS maximized merchantable volume at rotation age 60 after including more than 13 selections with an increase of around 3% over that obtained by the 1/SL selection scenario, with an associated increase in Ne of 50%. Other implications of the three alternative selection scenarios are discussed.  相似文献   

18.

Background

Genomic selection can increase genetic gain within aquaculture breeding programs, but the high costs related to high-density genotyping of a large number of individuals would make the breeding program expensive. In this study, a low-cost method using low-density genotyping of pre-selected candidates and their sibs was evaluated by stochastic simulation.

Methods

A breeding scheme with selection for two traits, one measured on candidates and one on sibs was simulated. Genomic breeding values were estimated within families and combined with conventional family breeding values for candidates that were pre-selected based on conventional BLUP breeding values. This strategy was compared with a conventional breeding scheme and a full genomic selection program for which genomic breeding values were estimated across the whole population. The effects of marker density, level of pre-selection and number of sibs tested and genotyped for the sib-trait were studied.

Results

Within-family genomic breeding values increased genetic gain by 15% and reduced rate of inbreeding by 15%. Genetic gain was robust to a reduction in marker density, with only moderate reductions, even for very low densities. Pre-selection of candidates down to approximately 10% of the candidates before genotyping also had minor effects on genetic gain, but depended somewhat on marker density. The number of test-individuals, i.e. individuals tested for the sib-trait, affected genetic gain, but the fraction of the test-individuals genotyped only affected the relative contribution of each trait to genetic gain.

Conclusions

A combination of genomic within-family breeding values, based on low-density genotyping, and conventional BLUP family breeding values was shown to be a possible low marker density implementation of genomic selection for species with large full-sib families for which the costs of genotyping must be kept low without compromising the effect of genomic selection on genetic gain.  相似文献   

19.
Pedigrees reconstructed through DNA marker assigned paternities in polymix (PMX) and open pollinated (OP) progeny tests were analyzed using mixed models to test the effect of unequal male reproductive success and pedigree errors on quantitative genetic parameters. The reconstructed pedigree increased heritabilities in the larger PMX test. Increased heritability resulted from adding the paternities to the pedigree per se, not by correcting the male reproductive bias by specifying the exact pedigree. Removing hypothesized pedigree errors had no effect on quantitative parameters, either because the magnitude of the errors was too small (PMX) or the progeny test was too small to detect variance components reliably (OP). Although there was no advantage in backwards selection, the increased additive variance, heritabilities and accuracy of progeny with assigned paternities in the pedigree, should permit forward selection of offspring with greater genetic gain and complete control of coancestry for future breeding decisions. Some possible breeding population structures with the new genetic information are discussed.  相似文献   

20.
Pedigrees reconstructed through DNA marker assigned paternities in polymix (PMX) and open pollinated (OP) progeny tests were analyzed using mixed models to test the effect of unequal male reproductive success and pedigree errors on quantitative genetic parameters. The reconstructed pedigree increased heritabilities in the larger PMX test. Increased heritability resulted from adding the paternities to the pedigree per se, not by correcting the male reproductive bias by specifying the exact pedigree. Removing hypothesized pedigree errors had no effect on quantitative parameters, either because the magnitude of the errors was too small (PMX) or the progeny test was too small to detect variance components reliably (OP). Although there was no advantage in backwards selection, the increased additive variance, heritabilities and accuracy of progeny with assigned paternities in the pedigree, should permit forward selection of offspring with greater genetic gain and complete control of coancestry for future breeding decisions. Some possible breeding population structures with the new genetic information are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号