首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nil hamster fibroblasts depleted of NAD(H) by growth in medium devoid of nicotinamide (NAm?MEM) exhibit up to 2-3-fold higher rates of glucose transport. Derepression of glucose transport is observed only when Nil cells have become severely depleted of both intracellular NAD(H) and ATP, despite the continued presence of 5.5 mM D-glucose in the growth medium. Neither the initial rate of transport, approximated from 3-O-methylglucose uptake, nor accumulation of D-glucose itself is repressed upon restoring nicotinamide to the medium. Exposure of the cells to NAD+ (10?5 M), however, leads to a sharp curtailment of transport within 2 to 3 hours. The purines, hypoxanthine and guanine, that sharply reduce glucose transport capacity of normal cells, have no significant effect upon transport activity of NAD(H)-depleted cells.  相似文献   

2.
Utilization and metabolism of NAD by Haemophilus parainfluenzae   总被引:2,自引:0,他引:2  
The utilization of exogenous nicotinamide adenine dinucleotide (NAD) by Haemophilus parainfluenzae was studied in suspensions of whole cells using radiolabelled NAD, nicotinamide mononucleotide (NMN), and nicotinamide ribonucleoside (NR). The utilization of these compounds by H. parainfluenzae has the following characteristics. (1) NAD is not taken up intact, but rather is degraded to NMN or NR prior to internalization. (2) Uptake is carrier-mediated and energy-dependent with saturation kinetics. (3) There is specificity for the beta-configuration of the glycopyridine linkage. (4) An intact carboxamide groups is required on the pyridine ring. The intracellular metabolism of NAD was studied in crude cell extracts and in whole cells using carbonyl-14C-labelled NR, NMN, NAD, nicotinamide, and nicotinic acid as substrates in separate experiments. A synthetic pathway from NR through NMN to NAD that requires Mg2+ and ATP was demonstrated. Nicotinamide was found as an end-product of NAD degradation. Nicotinic acid mononucleotide and nicotinic acid adenine dinucleotide were not found as intermediates. The NAD synthetic pathway in H. parainfluenzae differs from the Preiss-Handler pathway and the pyridine nucleotide cycles described in other bacteria.  相似文献   

3.
The response of the steady-state level of mitochondrial NAD(P)H of individual cardiac myocytes to substrate and to pharmacological alteration of intracellular calcium was investigated using a defined pacing protocol. Rapid pacing (5 Hz) reversibly decreased the NAD(P)H level and increased oxygen consumption whereas phosphocreatine and ATP levels did not change significantly. Verapamil plus NiCl2 blockade of calcium channels abolished contractions. Ryanodine, which prevents calcium-induced calcium release, also stopped cell contraction. NAD(P)H levels do not change in the absence of contraction. Blockade of sarcolemmal K+ channels did not stop contraction, and NAD(P)H levels reversibly decreased during rapid pacing. Thus rapid contractions are associated with a reversible decrease in NAD(P)H levels. Ruthenium red blockade of Ca2+ entry into mitochondria did not block contraction but significantly decreased NAD(P)H levels in both slowly paced (0.5 Hz) and rapidly paced cells. The simplest explanation of these data is that the steady-state reduction of NAD(P)H is strongly dependent on the rate of ATP utilization and not on sarcoplasmic Ca2+ levels when the oxygen and substrate supplies are not limiting and the intracellular calcium regulation is maintained. An effect of intracellular Ca2+ on NAD(P)H is observed only when Ca2+ entry into mitochondria is blocked with ruthenium red.  相似文献   

4.
Asymmetric biosyntheses allow for an efficient production of chiral building blocks. The application of whole cells as biocatalysts for asymmetric syntheses is advantageous because they already contain the essential coenzymes NAD(H) or NADP(H), which additionally can be regenerated in the cells. Unfortunately, reduced catalytic activity compared to the oxidoreductase activity is observed in many cases during whole‐cell biotransformation. This may be caused by low intracellular coenzyme pool sizes and/or a decline in intracellular coenzyme concentrations. To enhance the intracellular coenzyme pool sizes, the effects of the precursor metabolites adenine and nicotinic acid on the intracellular accumulation of NAD(H) and NADP(H) were studied in Saccharomyces cerevisiae. Based on the results of simple batch experiments with different precursor additions, fed‐batch processes for the production of yeast cells with enhanced NAD(H) or enhanced NADP(H) pool sizes were developed. Supplementation of the feed medium with 95 mM adenine and 9.5 mM nicotinic acid resulted in an increase of the intracellular NAD(H) concentration by a factor of 10 at the end of the fed‐batch process compared to the reference process. The final NAD(H) concentration remains unchanged if the feed medium was solely supplemented with 95 mM adenine, but intracellular NADP(H) was increased by a factor of 4. The effects of NADP(H) pool sizes on the asymmetric reduction of ethyl‐4‐chloro acetoacetate (CAAE) to the corresponding (S)‐4‐chloro‐3‐hydroxybutanoate (S‐CHBE) was evaluated with S. cerevisiae FasB His6 as an example. An intracellular threshold concentration above 0.07 mM NADP(H) was sufficient to increase the biocatalytic S‐CHBE productivity by 25 % compared to lower intracellular NADP(H) concentrations.  相似文献   

5.
The effect of different oxygen radical-generating systems on NAD(P)H was determined by incubating the reduced forms of the pyridine coenzymes with either Fe2+-H2O2 or Fe3+-ascorbate and by analyzing the reaction mixtures using a HPLC separation of adenine nucleotide derivatives. The effect of the azo-initiator 2,2'-azobis(2-methylpropionamidine)dihydrochloride was also tested. Results showed that, whilst all the three free radical-producing systems induced, with different extent, the oxidation of NAD(P)H to NAD(P)+, only Fe2+-H2O2 also caused the formation of equimolar amounts of ADP-ribose(P) and nicotinamide. Dose-dependent experiments, with increasing Fe2+ iron (concentration range 3-180 μM) or H2O2 (concentration range 50-1000 μM), were carried out at pH 6.5 in 50 mM ammonium acetate. NAD(P)+, ADP-ribose(P) and nicotinamide formation increased by increasing the amount of hydroxyl radicals produced in the medium. Under such incubation conditions NAD(P)+/ADP-ribose(P) ratio was about 4 at any Fe2+ or H2O2 concentration. By varying pH to 2.0, 3.0, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0 and 7.4, NAD(P)+/ADP-ribose(P) ratio changed to 5.5, 3.2, 1.8, 1.6, 2.0, 2.5, 3.0, 5.4 and 6.5, respectively. Kinetic experiments indicated that 90-95% of all compounds were generated within 5s from the beginning of the Fenton reaction. Inhibition of ADP-ribose(P), nicotinamide and NAD(P)+ production of Fe2+-H2O2-treated NAD(P)H samples, was achieved by adding mannitol (10-50 mM) to the reaction mixture. Differently, selective and total inhibition of ADP-ribose(P) and nicotinamide formation was obtained by performing the Fenton reaction in an almost completely anhydrous medium, i.e. in HPLC-grade methanol. Experiments carried out in isolated postischemic rat hearts perfused with 50 mM mannitol, showed that, with respect to values of control hearts, this hydroxyl radical scavenger prevented reperfusion-associated pyridine coenzyme depletion and ADP-ribose formation. On the basis of these results, a possible mechanism of action of ADP-ribose(P) and nicotinamide generation through the interaction between NAD(P)H and hydroxyl radical (which does not involve the C-center where “conventional” oxidation occurs) is presented. The implication of this phenomenon in the pyridine coenzyme depletion observed in postischemic tissues is also discussed.  相似文献   

6.
7.
Nicotinamide is metabolized primarily into NAD and N1-methylnicotinamide in cultured cells of normal rat kidney. The metabolic pathways for the nicotinamide metabolites are independently regulated and are influenced by the growth stage of the cells. N1-Methylnicotinamide levels are 1.5--2-fold elevated in cells growth-arrested by treatment with histidinol, thymidine, or picolinic acid, or by serum starvation. This increase is due to a more rapid rate of synthesis rather than decrease in excretion. The rates of both synthesis and degradation of NAD are increased in serum-starved cells so that the NAD concentration is the same as it is in growing cells. NAD and N1- methylnicotinamide levels are not significantly increased when the intracellular nicotinamide concentration is increased 20-fold by addition of excess nicotinamide to the culture medium, demonstrating that the size of the nicotinamide pool does not limit synthesis of these compounds. In medium containing normal amounts of nicotinamide, the apparent first-order rate constant for the decay of NAD, radioactively labeled in the nicotinamide moiety, is about 4 h-1. Labeled N1-methylnicotinamide is not metabolized, but rather is excreted into the medium with a first-order rate constant of 3.9 h-1. The rate of loss of label from NAD, but not from N1-methylnicotinamide, is increased about twofold by addition of excess nicotinamide to the culture medium. This could be explained by a dilution of a labeled nicotinamide pool which is formed during NAD degradation and which is recycled into NAD but not into N1-methylnicotinamide. The results demonstrate a rapid turnover of NAD at the bond joining nicotinamide and ADP-ribose, in agreement with previous studies. In addition, the results show that nicotinamide is metabolized into N1-methylnicotinamide with what appears to be a carefully regulated synthetic mechanism. The existence of significant amounts of N1-methylnicotinamide in cultured cells raises the question of the physiological importance of this compound.  相似文献   

8.
NAD(+) is both a co-enzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+) consuming enzymes. NAD(+) biosynthesis is required for two different regimens that extend lifespan in yeast. NAD(+) is synthesized from tryptophan and the three vitamin precursors of NAD(+): nicotinic acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells with NAD(+) precursors increases intracellular NAD(+) levels and extends replicative lifespan. Here we show that both nicotinamide riboside and nicotinic acid are not only vitamins but are also exported metabolites. We found that the deletion of the nicotinamide riboside transporter, Nrt1, leads to increased export of nicotinamide riboside. This discovery was exploited to engineer a strain to produce high levels of extracellular nicotinamide riboside, which was recovered in purified form. We further demonstrate that extracellular nicotinamide is readily converted to extracellular nicotinic acid in a manner that requires intracellular nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is elevated by the deletion of the nicotinic acid transporter, Tna1. The data indicate that NAD(+) metabolism has a critical extracellular element in the yeast system and suggest that cells regulate intracellular NAD(+) metabolism by balancing import and export of NAD(+) precursor vitamins.  相似文献   

9.
Vanadate-stimulated oxidation of NAD(P)H   总被引:1,自引:0,他引:1  
Vanadate stimulates the oxidation of NAD(P)H by biological membranes because such membranes contain NAD(P)H oxidases which are capable of reducing dioxygen to O2 and because vanadate catalyzes the oxidation of NAD(P)H by O2, by a free radical chain mechanism. Dihydropyridines, such as reduced nicotinamide mononucleotide (NMNH), which are not substrates for membrane-associated NAD(P)H oxidases, are not oxidized by membranes plus vanadate unless NAD(P)H is present to serve as a source of O2. When [NMNH] greatly exceeds [NAD(P)H], in such reaction mixtures, one can observe the oxidation of many molecules of NMNH per NAD(P)H consumed. This reflects the chain length of the free radical chain mechanism. We have discussed the mechanism and significance of this process and have tried to clarify the pertinent but confusing literature.  相似文献   

10.
Radish plasmalemma-enriched fractions show an NAD(P)H-ferricyanide or NAD(P)H-cytochrome c oxidoreductase activity which is not influenced by pH in the 4.5-7.5 range. In addition, at pH 4.5-5.0, NAD(P)H elicits an oxygen consumption (NAD(P)H oxidation) inhibited by catalase or superoxide dismutase (SOD), added either before or after NAD(P)H addition. Ferrous ions stimulate NAD(P)H oxidation, which is again inhibited by SOD and catalase. Hydrogen peroxide does not stimulate NADH oxidation, while it does stimulate Fe2+-induced NADH oxidation. NADH oxidation is unaffected by salicylhydroxamic acid and Mn2+, is stimulated by ferulic acid, and inhibited by KCN, EDTA and ascorbic acid. Moreover, NADH induces the conversion of epinephrine to adrenochrome, indicating that anion superoxide is formed during its oxidation. These results provide evidence that radish plasma membranes contain an NAD(P)H-ferricyanide or cytochrome c oxidoreductase and an NAD(P)H oxidase, active only at pH 4.5-5.0, able to induce the formation of anion superoxide, that is then converted to hydrogen peroxide. Ferrous ions, sparking a Fenton reaction, would stimulate NAD(P)H oxidation.  相似文献   

11.
Permeability of Rickettsia prowazekii to NAD.   总被引:4,自引:3,他引:1       下载免费PDF全文
Rickettsia prowazekii accumulated radioactivity from [adenine-2,8-3H]NAD but not from [nicotinamide-4-3H]NAD, which demonstrated that NAD was not taken up intact. Extracellular NAD was hydrolyzed by rickettsiae with the products of hydrolysis, nicotinamide mononucleotide and AMP, appearing in the incubation medium in a time- and temperature-dependent manner. The particulate (membrane) fraction contained 90% of this NAD pyrophosphatase activity. Rickettsiae which had accumulated radiolabel after incubation with [adenine-2,8-3H]NAD were extracted, and the intracellular composition was analyzed by chromatography. The cells contained labeled AMP, ADP, ATP, and NAD. The NAD-derived intracellular AMP was transported via a pathway distinct from and in addition to the previously described AMP translocase. Exogenous AMP (1 mM) inhibited uptake of radioactivity from [adenine-2,8-3H]NAD and hydrolysis of extracellular NAD. AMP increased the percentage of intracellular radiolabel present as NAD. Nicotinamide mononucleotide was not taken up by the rickettsiae, did not inhibit hydrolysis of extracellular NAD, and was not a good inhibitor of the uptake of radiolabel from [adenine-2,8-3H]NAD. Neither AMP nor ATP (both of which are transported) could support the synthesis of intracellular NAD. The presence of intracellular [adenine-2,8-3H]NAD within an organism in which intact NAD could not be transported suggested the resynthesis from AMP of [adenine-2,8-3H]NAD at the locus of NAD hydrolysis and translocation.  相似文献   

12.
13.
NAD (NAD(+)) and its reduced form (NADH) are omnipresent cofactors in biological systems. However, it is difficult to determine the extremes of the cellular NAD(H) level in live cells because the NAD(+) level is tightly controlled by a biosynthesis regulation mechanism. Here, we developed a strategy to determine the extreme NAD(H) levels in Escherichia coli cells that were genetically engineered to be NAD(+) auxotrophic. First, we expressed the ntt4 gene encoding the NAD(H) transporter in the E. coli mutant YJE001, which had a deletion of the nadC gene responsible for NAD(+) de novo biosynthesis, and we showed NTT4 conferred on the mutant strain better growth in the presence of exogenous NAD(+). We then constructed the NAD(+)-auxotrophic mutant YJE003 by disrupting the essential gene nadE, which is responsible for the last step of NAD(+) biosynthesis in cells harboring the ntt4 gene. The minimal NAD(+) level was determined in M9 medium in proliferating YJE003 cells that were preloaded with NAD(+), while the maximal NAD(H) level was determined by exposing the cells to high concentrations of exogenous NAD(H). Compared with supplementation of NADH, cells grew faster and had a higher intracellular NAD(H) level when NAD(+) was fed. The intracellular NAD(H) level increased with the increase of exogenous NAD(+) concentration, until it reached a plateau. Thus, a minimal NAD(H) level of 0.039 mM and a maximum of 8.49 mM were determined, which were 0.044× and 9.6× those of wild-type cells, respectively. Finally, the potential application of this strategy in biotechnology is briefly discussed.  相似文献   

14.
在人参(Panax ginseng C.A.Meyer)悬浮细胞质膜上测出了NAD(P)H氧化酶活性。这类NAD(P)H氧化酶活性可以被金瓜炭疽细胞壁激发子(Cle)诱导。Cle处理还能诱导人参悬浮细胞的氧进发、促进人参悬浮细胞的皂苷合成、提高苯丙氨酸解氨酶(PAL)的活力、以及诱导查尔式酮酶(CHS)的累积和细胞壁上抗性相关蛋白基因脯氨酸富裕蛋白基因hrgp(Hydroxyprolin-rich glycoproleins)的表达。当用哺乳动物白细胞质膜NADPH氧化酶的特异性抑制剂二亚苯基碘(Diphenylene iodonium,DPI)与奎吖因(quinacrine)预处理人参悬浮细胞30 min 后,Cle诱导的H2O2释放与Cle激活的质膜NAD(P)H氧化酶活性被抑制,同时Cle诱导的PAL活性及CHS的积累下降,皂苷合成与hrgp的表达被抑制。由此推测:人参细胞质膜NAD(P)H氧化酶与哺乳动物白细胞质膜NADPH氧化酶有很大的相似性。在Cle激发人参悬浮细胞产生氧进发的过程中,NAD(P)H氧化酶活性被诱导从而导致H2O2的产生,H2O2作为第二信使,激活苯丙氨酸途径,诱发人参皂苷的合成及hrgp防御基因的表达。这一过程中还涉及到Ca2+内流,胞内Ca2+浓度的升高,蛋白磷酸化与去磷酸化。人参细胞质膜NAD(P)H氧化酶在人参细胞对Cle的反应过程中起一种介导作用。因此可能存在由Cle刺激,NAD(P)H氧化酶被诱导,H2O2释放,到人  相似文献   

15.
P S Deng  S H Zhao  T Iyanagi  S A Chen 《Biochemistry》1991,30(28):6942-6948
Two photoaffinity analogues of NAD+, (A)-2-azido-NAD+ [nicotinamide 2-azidoadenine dinucleotide] and (A)-8-azido-NAD+ [nicotinamide 8-azidoadenine dinucleotide], have been synthesized, and their reactivities with the rat liver NAD(P)H:quinone acceptor oxidoreductase have been investigated. The reduce nicotinamide nucleotide probes, (A)-2-azido-NADH and (A)-8-azido-NADH, were shown to be substrates of the quinone reductase. This enzyme was inhibited by (A)-8-azido-NADH, were shown to be substrates of the quinone reductase. This enzyme was inhibited by (A)-2-azido-NAD+ and (A)-8-azido-NAD+ in a photodependent manner, and the inhibition of the enzyme could be prevented by the presence of nicotinamide nucleotide substrates during photolysis. (A)-2-Azido-NAD+ was demonstrated to be a more potent inhibitor than (A)-8-azido-NAD+. In addition, the photodependent inhibition by (A)-8-azido-NAD+ increased when menadione, the substrate of the enzyme, was present during the photolysis, while menadione protected the enzyme from the photodependent inhibition by (A)-2-azido-NAD+. These results indicate that these two NAD+ analogues can be used to identify the nicotinamide nucleotide binding site of this quinone reductase and that they probably bind to the enzyme in different fashions.  相似文献   

16.
It has been reported that nonmitochondrial NAD(P)H oxidases make an important contribution to intracellular O2-* in vascular tissues and, thereby, the regulation of vascular function. Topological analyses have suggested that a well-known membrane-associated NAD(P)H oxidase may not release O2-* into the cytosol. It is imperative to clarify the source of intracellular O2-* associated with this enzyme and its physiological significance in vascular cells. The present study hypothesized that an NAD(P)H oxidase on the sarcoplasmic reticulum (SR) in coronary artery smooth muscle (CASM) regulates SR ryanodine receptor (RyR) activity by producing O2-* locally. Western blot analysis was used to detect NAD(P)H oxidase subunits in purified SR from CASM. Fluorescent spectrometric analysis demonstrated that incubation of SR with NADH time dependently produced O2-*, which could be substantially blocked by the specific NAD(P)H oxidase inhibitors diphenylene iodonium and apocynin and by SOD or its mimetic tiron. This SR NAD(P)H oxidase activity was also confirmed by HPLC analysis of conversion of NADH to NAD+. In experiments of lipid bilayer channel reconstitution, addition of NADH to the cis solution significantly increased the activity of RyR/Ca2+ release channels from these SR preparations from CASM, with a maximal increase in channel open probability from 0.0044 +/- 0.0005 to 0.0213 +/- 0.0018; this effect of NADH was markedly blocked in the presence of SOD or tiron or the NAD(P)H oxidase inhibitors diphenylene iodonium, N-vanillylnonanamide, and apocynin. These results suggest that a local NAD(P)H oxidase system on SR from CASM regulates RyR/Ca2+ channel activity and Ca2+ release from SR by producing O2-*.  相似文献   

17.
Y. Mori  T. Ueda  Y. Kobatake 《Protoplasma》1987,139(2-3):141-144
Summary ThePhysarum plasmodium shows rhythmic contractile activities with a period of a few min. Phases of the oscillation in the plasmodium migrating unindirectionally agreed sideways throughout at the frontal part. So, time course of an intracellular chemical component was determined by analyzing small pieces cut off successively from the frontal part of the large plasmodium. Intracellular NAD(P)H concentration oscillated with the same period as the rhythmic contraction but with a different phase advancing about 1/3 of the period. UV irradiation suppressed the rhythmic contraction without affecting the rhythmic variation of NAD(P)H. Thus, the NAD(P)H oscillator works independently of the rhythmic contractile system, but seems entraining with each other.Abbreviations UV ultraviolet - NADH nicotinamide adenine dinucleotide, reduced form - NADPH nicotinamide adenine dinucleotide phosphate, reduced form - ATP adenosine 5-triphosphate - cAMP cyclic adenosine 3, 5-monophosphate - FMNH2 flavin mononucleotide, reduced form - TCA tricarboxylic acid - BSA bovine serum albumin - DTT dithiothreitol  相似文献   

18.
The redox state of mitochondrial pyridine nucleotides is known to be important for structural integrity of mitochondria. In this work, we observed a biphasic oxidation of endogenous NAD(P)H in rat liver mitochondria induced by tert-butylhydroperoxide. Nearly 85% of mitochondrial NAD(P)H was rapidly oxidized during the first phase. The second phase of NAD(P)H oxidation was retarded for several minutes, appearing after the inner membrane potential collapse and mitochondria swelling. It was characterized by disturbance of ATP synthesis and dramatic permeabilization of the inner membrane to pyridine nucleotides. The second phase was completely prevented by 0.5 microM cyclosporin A or 0.2 mM EGTA or was significantly delayed by 25 microM butylhydroxytoluene or trifluoperazine. The obtained data suggest that the second phase resulted from oxidation of the remaining NADH via the outer membrane electron transport system of permeabilized mitochondria, leading to further oxidation of the remaining NADPH in a transhydrogenase reaction.  相似文献   

19.
BackgroundThe opening of the permeability transition pore (PTP) in mitochondria plays a critical role in the pathogenesis of numerous diseases. Mitochondrial matrix pyridine nucleotides are potent regulators of the PTP, but the role of extramitochondrial nucleotides is unclear.MethodsThe PTP opening was explored in isolated mitochondria and mitochondria in permeabilized differentiated and undifferentiated cells in the presence of added NAD(P)(H) in combination with Mg2+, adenine nucleotides (AN), and the inhibitors of AN translocase (ANT), voltage-dependent anion channel (VDAC), and cyclophilin D.ResultsAdded NAD(H) and AN, but not NADP(H), inhibited the PTP opening with comparable potency. PTP suppression required neither NAD(H) oxidation nor reduction. The protective effects of NAD(H) and cyclosporin A were synergistic, and the effects of NAD(H) and millimolar AN were additive. The conformation-specific ANT inhibitors were unable to cancel the protective effect of NADH even under total ANT inhibition. Besides, NAD(H) activated the efflux of mitochondrial AN via ANT. VDAC ligand (Mg2+) and blockers (G3139 and 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid) potentiated and attenuated the protective effect of NAD(H), respectively. However, in embryonic and cancer (undifferentiated) cells, in contrast to isolated differentiated hepatocytes and cardiocytes, the suppression of PTP opening by NADH was negligible though all cells tested possessed a full set of VDAC isoforms.ConclusionsThe study revealed a novel mechanism of PTP regulation by external (cytosolic) NAD(H) through the allosteric site in the OM or the intermembrane space.General significanceThe mechanism might contribute to the resistance of differentiated cells under different pathological conditions including ischemia/reperfusion.  相似文献   

20.
Abstract Enterococcus faecalis was grown in chemostat culture on various energy sources at dilution rates ranging from 0.05 h−1 to 0.5 h−1, under both aerobic and anaerobic conditions. NADH/NAD ratios and total nicotinamide adenine dinucleotide pool size (NAD(H)) were determined. It was found that the NADH/NAD ratio was controlled by the steady state product concentrations rather than by the degree of reduction of the energy source. Highest ratios were observed when NADH was reoxidized via ethanol formation, whereas in aerobic cultures, in which predominantly acetate was produced and oxidation of NADH occurred via the NADH oxidase, ratios were lowest. Addition of ethanol to the medium resulted in an increase of the NADH/NAD ratio, both aerobically and anaerobically. The total amount of NAD(H) was found to be influenced by the culture conditions. Under anaerobic conditions, the NADH oxidation (NAD reduction) rate appeared to correlate with the total amount of nicotinamide nucleotides. In contrast, no effect of the culture conditions on the total amount of NAD(H) was observed in aerobically grown cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号