首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA vaccine of SARS-Cov S gene induces antibody response in mice   总被引:9,自引:0,他引:9  
The spike (S) protein, a main surface antigen of SARS-coronavirus (SARS-CoV), is one of themost important antigen candidates for vaccine design. In the present study, three fragments of the truncated S protein were expressed in E. coli, and analyzed with pooled sera of convalescence phase of SARS patients. The full length S gene DNA vaccine was constructed and used to immunize BALB/c mice. The mouse serum IgG antibody against SARS-CoV was measured by ELISA with E. coli expressed truncated S protein or SARS-CoV lysate as diagnostic antigen. The results showed that all the three fragments of S protein expressed by E. coli was able to react with sera of SARS patients and the S gene DNA candidate vaccine could induce the production of specific IgG antibody against SARS-CoV efficiently in mice with seroconversion ratio of 75% after 3 times of immunization. These findings lay some foundations for further understanding the immunology of SARS-CoV and developing SARS vaccines.  相似文献   

2.
Relatively little has been studied on the AMA-1 vaccine against Plasmodium vivax and on the plasmid DNA vaccine encoding P. vivax AMA-1 (PvAMA-1). In the present study, a plasmid DNA vaccine encoding AMA-1 of the reemerging Korean P. vivax has been constructed and a preliminary study was done on its cellular immunogenicity to recipient BALB/c mice. The PvAMA-1 gene was cloned and expressed in the plasmid vector UBpcAMA-1, and a protein band of approximately 56.8 kDa was obtained from the transfected COS7 cells. BALB/c mice were immunized intramuscularly or using a gene gun 4 times with the vaccine, and the proportions of splenic T-cell subsets were examined by fluorocytometry at week 2 after the last injection. The spleen cells from intramuscularly injected mice revealed no significant changes in the proportions of CD8(+) T-cells and CD4(+) T-cells. However, in mice immunized using a gene gun, significantly higher (P<0.05) proportions of CD8(+) cells were observed compared to UB vector-injected control mice. The results indicated that cellular immunogenicity of the plasmid DNA vaccine encoding AMA-1 of the reemerging Korean P. vivax was weak when it was injected intramuscularly; however, a promising effect was observed using the gene gun injection technique.  相似文献   

3.
Severe acute respiratory syndrome (SARS) is a serious threat to public health and the economy on a global scale. The SARS coronavirus (SARS-CoV) has been identified as the etiological agent for SARS. Thus, vaccination against SARS-CoV may represent an effective approach to controlling SARS. DNA vaccines are an attractive approach for SARS vaccine development, as they offer many advantages over conventional vaccines, including stability, simplicity, and safety. Our investigators have previously shown that DNA vaccination with antigen linked to calreticulin (CRT) dramatically enhances major histocompatibility complex class I presentation of linked antigen to CD8(+) T cells. In this study, we have employed this CRT-based enhancement strategy to create effective DNA vaccines using SARS-CoV nucleocapsid (N) protein as a target antigen. Vaccination with naked CRT/N DNA generated the most potent N-specific humoral and T-cell-mediated immune responses in vaccinated C57BL/6 mice among all of the DNA constructs tested. Furthermore, mice vaccinated with CRT/N DNA were capable of significantly reducing the titer of challenging vaccinia virus expressing the N protein of the SARS virus. These results show that a DNA vaccine encoding CRT linked to a SARS-CoV antigen is capable of generating strong N-specific humoral and cellular immunity and may potentially be useful for control of infection with SARS-CoV.  相似文献   

4.
Severe acute respiratory syndrome coronavirus (SARS-CoV) first appeared in Southern China in November 2002, and then quickly spread to 33 countries on five continents along international air travel routes. Although the SARS epidemic has been contained, there is a clear need for a safe and effective vaccine should an outbreak of a SARS-CoV infection reappear in human population. In this study, we tested four DNA-vaccine constructs: (1) pLL70, containing cDNA for the SARS-CoV spike (S) gene; (2) pcDNA-SS, containing codon-optimized S gene for SARS-CoV S protein (residues 12-1255) fused with a leader sequence derived from the human CD5 gene; (3) pcDNA-St, containing the gene encoding the N-portion of the codon-optimized S gene (residues 12-532) with the CD5 leader sequence; (4) pcDNA-St-VP22C, containing the gene encoding the N-portion of the codon-optimized S protein with the CD5 leader sequence fused with the C-terminal 138 amino acids of the bovine herpesvirus-1 (BHV-1) major tegument protein VP22. Each of these plasmids was intradermally administered to C57BL/6 mice in three separate immunizations. Analysis of humoral and cellular immune responses in immunized mice demonstrated that pcDNA-SS and pcDNA-St-VP22C are the most immunogenic SARS vaccine candidates.  相似文献   

5.
SARS冠状病毒刺突蛋白在裂殖酵母中的表达   总被引:1,自引:0,他引:1  
根据SARS冠状病毒S蛋白主要抗原表位的分析,将S蛋白基因扩增成大小为800 bp~1000 bp的5个片段,分别与裂殖酵母载体pNMT1连接,经电穿孔转化TCP1菌株,得到诱导表达5个片段的裂殖酵母菌株。对诱导表达产物进行SDSPAGE和Western blot分析表明,S基因5个片段在裂殖酵母中分别得到不同程度的表达,为进一步研究新一代SARS疫苗提供了材料。  相似文献   

6.
Severe acute respiratory syndrome (SARS) is a highly contagious zoonotic disease caused by SARS coronavirus (SARS-CoV). Since its outbreak in Guangdong Province of China in 2002, SARS has caused 8096 infections and 774 deaths by December 31st, 2003. Although there have been no more SARS cases reported in human populations since 2004, the recent emergence of a novel coronavirus disease (COVID-19) indicates the potential of the recurrence of SARS and other coronavirus disease among humans. Thus, developing a rapid response SARS vaccine to provide protection for human populations is still needed. Spike (S) protein of SARS-CoV can induce neutralizing antibodies, which is a pivotal immunogenic antigen for vaccine development. Here we constructed a recombinant chimeric vesicular stomatitis virus (VSV) VSVΔG-SARS, in which the glycoprotein (G) gene is replaced with the SARS-CoV S gene. VSVΔG-SARS maintains the bullet-like shape of the native VSV, with the heterogeneous S protein incorporated into its surface instead of G protein. The results of safety trials revealed that VSVΔG-SARS is safe and effective in mice at a dose of 1×106 TCID50. More importantly, only a single-dose immunization of 2×107 TCID50 can provide high-level neutralizing antibodies and robust T cell responses to non-human primate animal models. Thus, our data indicate that VSVΔG-SARS can be used as a rapid response vaccine candidate. Our study on the recombinant VSV-vectored SARS-CoV vaccines can accumulate experience and provide a foundation for the new coronavirus disease in the future.  相似文献   

7.
The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses.  相似文献   

8.
Effective vaccines should confer long-term protection against future outbreaks of severe acute respiratory syndrome (SARS) caused by a novel zoonotic coronavirus (SARS-CoV) with unknown animal reservoirs. We conducted a cohort study examining multiple parameters of immune responses to SARS-CoV infection, aiming to identify the immune correlates of protection. We used a matrix of overlapping peptides spanning whole SARS-CoV proteome to determine T cell responses from 128 SARS convalescent samples by ex vivo IFN-gamma ELISPOT assays. Approximately 50% of convalescent SARS patients were positive for T cell responses, and 90% possessed strongly neutralizing Abs. Fifty-five novel T cell epitopes were identified, with spike protein dominating total T cell responses. CD8(+) T cell responses were more frequent and of a greater magnitude than CD4(+) T cell responses (p < 0.001). Polychromatic cytometry analysis indicated that the virus-specific T cells from the severe group tended to be a central memory phenotype (CD27(+)/CD45RO(+)) with a significantly higher frequency of polyfunctional CD4(+) T cells producing IFN-gamma, TNF-alpha, and IL-2, and CD8(+) T cells producing IFN-gamma, TNF-alpha, and CD107a (degranulation), as compared with the mild-moderate group. Strong T cell responses correlated significantly (p < 0.05) with higher neutralizing Ab. The serum cytokine profile during acute infection indicated a significant elevation of innate immune responses. Increased Th2 cytokines were observed in patients with fatal infection. Our study provides a roadmap for the immunogenicity of SARS-CoV and types of immune responses that may be responsible for the virus clearance, and should serve as a benchmark for SARS-CoV vaccine design and evaluation.  相似文献   

9.
Acquired immunity against infection with Trypanosoma cruzi is dependent on CD8(+)T cells. Here, to develop a vaccine strategy taking advantage of activated CD8(+)T cells, we constructed a DNA vaccine, designated pGFP-TSA1, encoding a fusion protein linking GFP to a single CTL epitope of TSA1, a leading candidate for vaccine against T. cruzi. C57BL/6 mice vaccinated with this plasmid showed suppressed parasitemia and prolonged survival. Vaccination with pGFP-TSA1 enhanced epitope-specific cytotoxicity and IFN-gamma secretion by CD8(+)T cells. Furthermore, the depletion of CD8(+)T cells prior to challenge infection with T. cruzi completely abolished this protection, indicating that CD8(+)T cells are the principal effector T cells involved. When mice deficient in the proteasome activator PA28alpha/beta or the immunoproteasome subunits LMP2 and LMP7 were used, the protective immunity against infection was profoundly attenuated. Our findings clearly demonstrate that vaccination with pGFP-TSA1 successfully induces protection dependent on CD8(+)T cell activation, in which immunoproteasomes play a crucial role. It is noteworthy to document that physical binding of the epitope and GFP is required for induction of this protection, since mice vaccinated with pTSA1-IRES-GFP failed to acquire resistance, probably because the epitope and GFP are separately expressed in the antigen-presenting cells.  相似文献   

10.
Viral vaccine vectors have emerged as an attractive strategy for the development of a human immunodeficiency virus (HIV) vaccine. Recombinant Newcastle disease virus (rNDV) stands out as a vaccine vector since it has a proven safety profile in humans, it is a potent inducer of both alpha interferon (IFN-α) and IFN-β) production, and it is a potent inducer of dendritic cell (DC) maturation. Our group has previously generated an rNDV vector expressing a codon-optimized HIV Gag protein and demonstrated its ability to induce a Gag-specific CD8(+) T cell response in mice. In this report we demonstrate that the Gag-specific immune response can be further enhanced by the targeting of the rNDV-encoded HIV Gag antigen to DCs. Targeting of the HIV Gag antigen was achieved by the addition of a single-chain Fv (scFv) antibody specific for the DC-restricted antigen uptake receptor DEC205 such that the DEC205 scFv-Gag molecule was encoded for expression as a fusion protein. The vaccination of mice with rNDV coding for the DC-targeted Gag antigen induced an enhanced Gag-specific CD8(+) T cell response and enhanced numbers of CD4(+) T cells and CD8(+) T cells in the spleen relative to vaccination with rNDV coding for a nontargeted Gag antigen. Importantly, mice vaccinated with the DEC205-targeted vaccine were better protected from challenge with a recombinant vaccinia virus expressing the HIV Gag protein. Here we demonstrate that the targeting of the HIV Gag antigen to DCs via the DEC205 receptor enhances the ability of an rNDV vector to induce a potent antigen-specific immune response.  相似文献   

11.
严重急性呼吸道综合征冠状病毒疫苗研究现状   总被引:5,自引:0,他引:5  
冠状病毒被认为是新近爆发的严重急性呼吸道综合征的病原体.迄今公共数据库中已发表了不同国家和地区分离的12个SARS病毒株基因组完整序列.突起蛋白是冠状病毒的主要抗原,包含许多抗原决定簇.SARS冠状病毒突起蛋白的相对保守性为有效疫苗的开发奠定了很好的研究基础.灭活或减毒的冠状病毒疫苗存在一定的局限性和危险性.开展基因工程疫苗和核酸疫苗的制备研究以及相关候选疫苗的联合应用研究将是一个切实可行的途径.  相似文献   

12.
Bai B  Hu Q  Hu H  Zhou P  Shi Z  Meng J  Lu B  Huang Y  Mao P  Wang H 《PloS one》2008,3(7):e2685
The pathogenesis of SARS coronavirus (CoV) remains poorly understood. In the current study, two recombinant baculovirus were generated to express the spike (S) protein of SARS-like coronavirus (SL-CoV) isolated from bats (vAcBS) and the envelope (E) and membrane (M) proteins of SARS-CoV, respectively. Co-infection of insect cells with these two recombinant baculoviruses led to self-assembly of virus-like particles (BVLPs) as demonstrated by electron microscopy. Incorporation of S protein of vAcBS (BS) into VLPs was confirmed by western blot and immunogold labeling. Such BVLPs up-regulated the level of CD40, CD80, CD86, CD83, and enhanced the secretion of IL-6, IL-10 and TNF-alpha in immature dendritic cells (DCs). Immune responses were compared in immature DCs inoculated with BVLPs or with VLPs formed by S, E and M proteins of human SARS-CoV. BVLPs showed a stronger ability to stimulate DCs in terms of cytokine induction as evidenced by 2 to 6 fold higher production of IL-6 and TNF-alpha. Further study indicated that IFN-gamma+ and IL-4+ populations in CD4+ T cells increased upon co-cultivation with DCs pre-exposed with BVLPs or SARS-CoV VLPs. The observed difference in DC-stimulating activity between BVLPs and SARS CoV VLPs was very likely due to the S protein. In agreement, SL-CoV S DNA vaccine evoked a more vigorous antibody response and a stronger T cell response than SARS-CoV S DNA in mice. Our data have demonstrated for the first time that SL-CoV VLPs formed by membrane proteins of different origins, one from SL-CoV isolated from bats (BS) and the other two from human SARS-CoV (E and M), activated immature DCs and enhanced the expression of co-stimulatory molecules and the secretion of cytokines. Finding in this study may provide important information for vaccine development as well as for understanding the pathogenesis of SARS-like CoV.  相似文献   

13.
滕家波  张毅 《微生物学报》1999,39(6):533-538
将编码肠毒素源性大肠杆菌定居因子抗原CS6基因克隆到pXL670,转化asd基因突变的E.coli X6097,获得重组质粒pSS64,再将后者转化至减毒的△aroA、△aroC、△asd伤寒沙门氏菌,构建了无药物抗性且稳定的大肠杆菌和伤寒双价菌苗候选株。小鼠腹腔免疫和攻击实验表明,该菌株对伤寒沙门氏菌毒株的攻击具有良好的保护作用。家兔免疫实验证明,该菌株能产生抗CS6和伤寒菌Vi抗原的血清抗体。  相似文献   

14.
本研究旨在评价新型抗结核融合蛋白亚单位疫苗Ag85A-γ干扰素(Ag85A-IFN-γ)的免疫效果.在成功表达并纯化了去除Ag85A信号肽的融合蛋白Ag85A-IFN-γ后,将其与免疫佐剂二甲基三十六烷基铵(DDA)混合,皮下免疫C57BL/6小鼠3次,每次间隔2周,末次免疫2周后进行效果评价.采用酶联免疫吸附试验(ELISA)检测血清中IgG、IgG1和IgG2c水平.结果显示,融合蛋白Ag85A-IFN-γ组的IgG水平均高于单独抗原组,且融合蛋白组IgG2c/IgG1 比值显著高于对照组,表明融合蛋白能刺激宿主产生更强烈的体液免疫反应,更倾向于激发T辅助细胞1型(Th1型)免疫反应.流式细胞术检测特异性CD4+和CD8+ T细胞比例,发现Ag85A-IFN-γ组CD8+/CD4+最高,显示该融合蛋白能显著增强CD8+ T细胞增殖.上述结果表明,融合蛋白Ag85A-IFN-γ有望成为有效的新型抗结核融合蛋白亚单位疫苗.  相似文献   

15.
SARS-CoV假病毒中和试验技术的建立及评价   总被引:1,自引:1,他引:0  
为避免传统的SARS病毒中和试验需要操作活毒而存在的生物安全隐患,建立了基于假病毒系统、操作较安全的SARS中和试验技术平台。本研究应用高效表达SARS-CoV S(密码子优化的全长S蛋白,简称S)的真核表达载体(pVRC8304),与HIV慢病毒包装质粒(p CMV△8.2)及转移质粒(pHR′CMV EGFP)3个质粒载体系统共同转染人胚肾细胞293T,包装了SARS假病毒;通过SARS假病毒感染的RD-A细胞中标记基因EGFP表达的分析,确定SARS假病毒能有效进入细胞,建立了可在BSL-2级实验室操作的SARS病毒中和试验技术平台。用该技术平台对不同免疫血清进行了中和抗体分析,并比较了基于假病毒和基于SARS活病毒的中和试验效果。结果显示:SARS假病毒和SARS活病毒两个中和试验系统获得中和抗体滴度变化趋势一致,表明本研究构建的SARS假病毒可替代SARS活病毒用于建立操作上安全的SARS病毒中和试验技术平台。  相似文献   

16.
辐射敏感蛋白23具有核苷酸切除修复功能,在泛素蛋白酶体途径中起到重要作用。本研究利用PCR技术克隆了日本血吸虫辐射敏感蛋白23(Sj RAD23)编码的c DNA序列,成功获得Sj RAD23的基因序列,其ORF为1 053 bp。构建Sj RAD23基因重组表达质粒p ET28a(+)-Sj RAD23,并在大肠杆菌BL21中成功诱导表达,重组蛋白在上清和沉淀中都有存在。利用免疫组化技术检测该蛋白在虫体的分布情况,该蛋白广泛分布在日本血吸虫虫体被膜。用重组蛋白免疫BALB/c小鼠后,免疫小鼠血清中检测到较高水平的特异性Ig G、Ig G1和Ig G2a。Western blotting分析显示重组蛋白能够被日本血吸虫成虫可溶性抗原免疫小鼠血清所识别。用重组蛋白r Sj RAD23免疫结果与206佐剂对照组比较,r Sj RAD23在BALB/c小鼠中诱导了35.94%减虫率,40.59%肝脏减卵率。结果表明Sj RAD23具有作为疫苗候选分子的潜力。  相似文献   

17.
E蛋白是存在于SARS病毒表面的一个小分子蛋白,在病毒的出芽过程中有重要的作用。为建立一种检测SARS病毒抗原的新方法,将E蛋白全基因序列分段合成,用连接酶连接后插入pET—GST载体,转化大肠杆菌BL21进行融合表达,结果得以成功表达GST-E融合蛋白;为SARS病毒致病机理研究和疫苗及诊断试剂的研制打下了基础。  相似文献   

18.
利用PCR基因扩增法,以SARS冠状病毒全基因质粒为模板,获得N蛋白相应抗原基因,构建了表达载体pBV220/SARS-N,并在E.coli中获得高效表达。用纯化后的N蛋白抗原包被测定板,通过间接ELISA法对阴阳性血清进行活性测定,结果表明,在46份阳性血中有41份被测出,检出率为89.13%。本研究克隆并表达了SARS冠状病毒N蛋白,为进一步研制SARS病人抗体检测试剂和SARS疫苗奠定了基础。  相似文献   

19.
The development of an effective vaccine against Mycobacterium tuberculosis is a research area of intense interest. Mounting evidence suggests that protective immunity to M. tuberculosis relies on both MHC class II-restricted CD4(+) T cells and MHC class I-restricted CD8(+) T cells. By purifying polypeptides present in the culture filtrate of M. tuberculosis and evaluating these molecules for their ability to stimulate PBMC from purified protein derivative-positive healthy individuals, we previously identified a low-m.w. immunoreactive T cell Ag, Mtb 8.4, which elicited strong Th1 T cell responses in healthy purified protein derivative-positive human PBMC and in mice immunized with recombinant Mtb 8.4. Herein we report that Mtb 8.4-specific T cells can be detected in mice immunized with the current live attenuated vaccine, Mycobacterium bovis-bacillus Calmette-Guérin as well as in mice infected i.v. with M. tuberculosis. More importantly, immunization of mice with either plasmid DNA encoding Mtb 8.4 or Mtb 8.4 recombinant protein formulated with IFA elicited strong CD4(+) T cell and CD8(+) CTL responses and induced protection on challenge with virulent M. tuberculosis. Thus, these results suggest that Mtb 8.4 is a potential candidate for inclusion in a subunit vaccine against TB.  相似文献   

20.
目的:利用Bac-to-Bac1杆状病毒系统,在sf9昆虫细胞中表达严重急性呼吸综合征(SARS)冠状病毒(SARS-CoV)的S受体结合区蛋白片段,并对其免疫原性进行研究。方法:将S蛋白的受体结合区基因片段定向克隆至转座载体pFast-Bac1,转化大肠杆菌DH10Bac感受态细胞,用抗生素平板筛选重组杆粒。脂质体介导重组杆粒转染sf9昆虫细胞,待细胞形态明显改变后收获细胞和培养上清液。利用SARS病人恢复期抗血清做ELISA和Western印迹,分析重组蛋白的抗原性。结果:ELISA和Western印迹表明,在sf9昆虫细胞中表达的SARS-CoVS受体结合区重组蛋白可与SARS病人恢复期抗血清发生特异反应。结论:获得了在昆虫细胞内表达的SARS-CoVS受体结合区重组蛋白,并证明该蛋白有可能用于SARS感染的抗体检测,为SARS-CoV免疫机制及其疫苗的进一步研究奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号