首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two alternatively spliced variants of an orphan Caenorhabditis elegans G-protein-coupled receptors (GPCRs; Y58G8A.4a and Y58G8A.4b) were cloned and functionally expressed in Chinese hamster ovary (CHO) cells. The Y58G8A.4a and Y58G8A.4b proteins (397 and 433 amino acid residues, respectively) differ both in amino acid sequence and length of the C-terminal tail of the receptor. A calcium mobilization assay was used as a read-out for receptor function. Both receptors were activated, with nanomolar potencies, by putative peptides encoded by the flp-18 precursor gene, leading to their designation as FLP-18R1a (Y58G8A.4a) and FLP-18R1b (Y58G8A.4b). Three Ascaris suum neuropeptides AF3, AF4, and AF20 all sharing the same FLP-18 C-terminal signature, -PGVLRF-NH(2), were also potent agonists. In contrast to other previously reported C. elegans GPCRs expressed in mammalian cells, both FLP-18R1 variants were fully functional at 37 degrees C. However, a 37 to 28 degrees C temperature shift improved their activity, an effect that was more pronounced for FLP-18R1a. Despite differences in the C-terminus, the region implicated in distinct G-protein recognition for many other GPCRs, the same signaling pathways were observed for both Y58G8A.4 isoforms expressed in CHO cells. Gq protein coupling seems to be the main but not the exclusive signaling pathway, because pretreatment of cells with U-73122, a phospholipase inhibitor, attenuated but did not completely abolish the Ca(2+) signal. A weak Gs-mediated receptor activation was also detected as reflected in an agonist-triggered concentration-dependent cAMP increase. The matching of the FLP-18 peptides with their receptor(s) allows for the evaluation of the pharmacology of this system in the worm in vivo.  相似文献   

2.
This report describes the cloning and functional annotation of a Caenorhabditis elegans orphan G-protein-coupled receptor (GPCR) (C10C6.2) as a receptor for the FMRFamide-related peptides (FaRPs) encoded on the flp15 precursor gene, leading to the receptor designation FLP15-R. A cDNA encoding C10C6.2 was obtained using PCR techniques, confirmed identical to the Worm-pep-predicted sequence, and cloned into a vector appropriate for eucaryotic expression. A [35S]guanosine 5'-O-(thiotriphosphate) (GTPgammaS) assay with membranes prepared from Chinese hamster ovary (CHO) cells transiently transfected with FLP15-R was used as a read-out for receptor activation. FLP15-R was activated by putative FLP15 peptides, GGPQGPLRF-NH2 (FLP15-1), RGPSGPLRF-NH2 (FLP15-2A), its des-Arg1 counterpart, GPSGPLRF-NH2 (FLP15-2B), and to a lesser extent, by a tobacco hornworm Manduca sexta FaRP, GNSFLRFNH2 (F7G) (potency ranking FLP15-2A > FLP15-1 > FLP15-2B > F7G). FLP15-R activation was abolished in the transfected cells pretreated with pertussis toxin, suggesting a preferential receptor coupling to Gi/Go proteins. The functional expression of FLP15-R in mammalian cells was temperature-dependent. Either no stimulation or significantly lower ligand-evoked [35S]GTPgammaS binding was observed in membranes prepared from transfected FLP15-R/CHO cells cultured at 37 degrees C. However, a 37 to 28 degrees C temperature shift implemented 24 h post-transfection consistently resulted in an improved activation signal and was essential for detectable functional expression of FLP15-R in CHO cells. To our knowledge, the FLP15 receptor is only the second deorphanized C. elegans neuropeptide GPCR reported to date.  相似文献   

3.
We have investigated the target choice of the related transposable elements Tc1 and Tc3 of the nematode C. elegans. The exact locations of 204 independent Tc1 insertions and 166 Tc3 insertions in an 1 kbp region of the genome were determined. There was no phenotypic selection for the insertions. All insertions were into the sequence TA. Both elements have a strong preference for certain positions in the 1 kbp region. Hot sites for integration are not clustered or regularly spaced. The orientation of the integrated transposon has no effect on the distribution pattern. We tested several explanations for the target site preference. If simple structural features of the DNA (e.g. bends) would mark hot sites, we would expect the patterns of the two related transposons Tc1 and Tc3 to be similar; however we found them to be completely different. Furthermore we found that the sequence at the donor site has no effect on the choice of the new insertion site, because the insertion pattern of a transposon that jumps from a transgenic donor site is identical to the insertion pattern of transposons jumping from endogenous genomic donor sites. The most likely explanation for the target choice is therefore that the primary sequence of the target site is recognized by the transposase. However, alignment of the Tc1 and Tc3 integration sites does not reveal a strong consensus sequence for either transposon.  相似文献   

4.
The complete primary structure of the major isoform (H1.1) of histone H1 from the nematode Caenorhabditis elegans was determined. The amino acid chain consists of 207 amino acids and has a blocked N-terminus. The nematode histone shows rather little sequence identity when compared with proteins of the H1 family derived from other organisms. However, the main characteristic features of H1 molecules have been well conserved: a tripartite domain structure consisting of a central hydrophobic core of about 80 residues, flanked by an N-terminal domain which is somewhat acidic at the very N-terminus, but very basic further on, and a long C-terminal domain very rich in lysine, alanine and proline. Several repeat structures, including a twice (with modification)-repeated and well-conserved phosphorylation site, can be recognized in this region. The presence of O-phosphoserine at these sites could not be demonstrated, however.  相似文献   

5.
The complete amino acid sequence of histone H2B from the nematode Caenorhabditis elegans was determined. The protein as obtained by us is a mixture of multiple forms. Approx. 90% of the molecules consist of a polypeptide chain of 122 amino acids with alanine as N-terminal residue and proline at the second position. In the remaining 10% alanine is lacking and the chain starts with proline. In addition to the heterogeneity of chain length, polymorphism occurs at the positions 7 (Ala/Lys), 14 (Ala/Lys) and 72 (Ala/Ser) of the major chain and at position 6 (Ala/Lys) of the shorter chain. In the N-terminal third of the molecule there is a high degree of sequence homology to the corresponding region in H2B from Drosophila (insect), Patella (mollusc) and Asterias (starfish). In contrast, this part of the molecule differs considerably from mammalian histone H2B.  相似文献   

6.
Phylogenetic analysis of transmembrane regions of GPCRs using PHYLIP indicated that the orphan receptor P2Y10 receptor was classified into the cluster consisting nucleotide and lipid receptors. Based on the results, we studied the abilities of nucleotides and lipids to activate the P2Y10 receptors. As a result, sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) evoked intracellular Ca2+ increases in the CHO cells stably expressing the P2Y10 fused with a G16α protein. These Ca2+ responses were inhibited by S1P receptor and LPA receptor antagonists. The introduction of siRNA designed for P2Y10 receptor into the P2Y10-CHO cells effectively blocked both S1P- and LPA-induced Ca2+ increases. RT-PCR analysis showed that the mouse P2Y10 was expressed in reproductive organs, brain, lung and skeletal muscle, suggesting the receptor plays physiological roles throughout the whole body. In conclusion, the P2Y10 receptor is the first receptor identified as a dual lysophospholipid receptor.  相似文献   

7.
The complete amino acid sequence of a minor isoform (H1.2) of histone H1 from the nematode Caenorhabditis elegans was determined. The amino acid chain consists of 190 residues and has a blocked N-terminus. Histone subtype H1.2 is 17 residues shorter than the major isoform H1.1, mainly as the result of deletions of short peptide fragments. Considerable divergence from isoform H1.1 has occurred in the N-terminal domain and the very C-terminus of the molecule, but the central globular domain and most of the C-terminal domain, including two potential phosphorylation sites, have been well conserved. Secondary-structure predictions for both H1 isoforms reveal a high potential for helix formation in the N-terminal region 1-33 of isoform H1.1 whereas the corresponding region in isoform H1.2 has low probability of being found in alpha-helix. No major differences in secondary structure are predicted for other parts of both H1 subtypes. The aberrant conformation of isoform H1.2 may be indicative of a significantly different function.  相似文献   

8.
The Tc1 transposon of Caenorhabditis elegans always integrates into the sequence TA, but some TA sites are preferred to others. We investigated a TA target site from the gpa-2 gene of C.elegans that was previously found to be preferred (hot) for Tc1 integration in vivo . This site with its immediate flanks was cloned into a plasmid, and remained hot in vitro , showing that sequences immediately adjacent to the TA dinucleotide determine this target choice. Further deletion mapping and mutagenesis showed that a 4 bp sequence on one side of the TA is sufficient to make a site hot; this sequence nicely fits the previously identified Tc1 consensus sequence for integration. In addition, we found a second type of hot site: this site is only preferred for integration when the target DNA is supercoiled, not when it is relaxed. Excision frequencies were relatively independent of the flanking sequences. The distribution of Tc1 insertions into a plasmid was similar when we used nuclear extracts or purified Tc1 transposase in vitro , showing that the Tc1 transposase is the protein responsible for the target choice.  相似文献   

9.
10.
The transposon Tc1 of the nematode Caenorhabditis elegans is a member of the widespread family of Tc1/mariner transposons. The distribution pattern of virtually identical transposons among insect species that diverged 200 million years ago suggested horizontal transfer of the elements between species. Thishypothesis gained experimental support when it was shown that Tc1 and later also mariner transposons could be made to jump in vitro , with their transposase as the only protein required. Later it was shown that mariner transposons from one fruit fly species can jump in other fruit fly species and in a protozoan and, recently, that a Tc1-like transposon from the nematode jumps in fish cells and that a fish Tc1-like transposon jumps in human cells. Here we show that the Tc1 element from the nematode jumps in human cells. This provides further support for the horizontal spread hypothesis. Furthermore, it suggests that Tc1 can be used as vehicle for DNA integration in human gene therapy.  相似文献   

11.
The transposable element Tc1 is responsible for most spontaneous mutations that occur in many Caenorhabditis elegans strains. We analyzed the abundance and sequence of mRNAs expressed from five different Tc1 insertions within either hlh-1 (a MyoD homolog) or unc-54 (a myosin heavy chain gene). Each of the mutants expresses substantial quantities of mature mRNA in which most or all of Tc1 has been removed by splicing. Such mRNAs contain small insertions of Tc1 sequences and/or deletions of target gene sequences at the resulting spliced junctions. Most of these mutant mRNAs do not contain premature stop codons, and many are translated in frame to produce proteins that are functional in vivo. The number and variety of splice sites used to remove Tc1 from these mutant pre-mRNAs are remarkable. Two-thirds of the Tc1-containing introns removed from hlh-1 and unc-54 lack either the 5'-GU or AG-3' dinucleotides typically found at the termini of eukaryotic introns. We conclude that splicing to remove Tc1 from mutant pre-mRNAs allows many Tc1 insertions to be phenotypically silent. Such mRNA processing may help Tc1 escape negative selection.  相似文献   

12.
R H Plasterk 《The EMBO journal》1991,10(7):1919-1925
Mutations caused by the Tc1 transposon in Caenorhabditis elegans can revert by loss of the element. Usually the transposon leaves behind a 'footprint'--a few nucleotides of one or both ends of the transposon. Two possible explanations for the footprints are: (i) imprecise excision or (ii) interrupted repair. Here I report that in a diploid animal having a homozygous Tc1 insertion the reversion frequency is approximately 10(-4), and a Tc1 footprint is found; however when the corresponding sequence on the homologous chromosome is wild-type, the reversion frequency is 100 times higher, and the reverted sequence is precise. Apparently the footprint results from incomplete gene conversion from the homologous chromosome, and not from imprecise excision of Tc1. These results support the following model: Tc1 excision leaves a double-strand DNA break, which can be repaired using the homologous chromosome or sister chromatid as a template. In heterozygotes repair can lead to reversion; in homozygotes Tc1 is copied into the 'empty' site, and only rare interrupted repair leads to reversion, hence the 100-fold lower reversion rate and the footprint.  相似文献   

13.
The glp-1 gene encodes a membrane protein required for inductive cell interactions during development of the nematode Caenorhabditis elegans. Here we report the molecular characterization of 15 loss-of-function (lf) mutations of glp-1. Two nonsense mutations appear to eliminate glp-1 activity; both truncate the glp-1 protein in its extracellular domain and have a strong loss-of-function phenotype. Twelve missense mutations and one in-frame deletion map to sites within the repeated motifs of the glp-1 protein (10 epidermal growth factor [EGF]-like and 3 LNG repeats extracellularly and 6 cdc10/SWI6, or ankyrin, repeats intracellularly). We find that all three types of repeated motifs are critical to glp-1 function, and two individual EGF-like repeats may have distinct functions. Intriguingly, all four missense mutations in one phenotypic class map to the N-terminal EGF-like repeats and all six missense mutations in a second phenotypic class reside in the intracellular cdc10/SWI6 repeats. These two clusters of mutations may identify functional domains within the glp-1 protein.  相似文献   

14.
15.
M R Brown  J W Crim  R C Arata  H N Cai  C Chun  P Shen 《Peptides》1999,20(9):1035-1042
A neuropeptide F (NPF) was isolated from the fruit fly, Drosophila mellanogaster, based on a radioimmunoassay for a gut peptide from the corn earworm, Helicoverpa zea. A partial sequence was obtained from the fly peptide, and a genomic sequence coding for NPF was cloned after inverse polymerase chain reaction and shown to exist as a single genomic copy. The encoded, putative prepropeptide can be processed into an amidated NPF with 36 residues that is related to invertebrate NPF's and the neuropeptide Y family of vertebrates. In situ hybridization and immunocytochemistry showed that Drosophila NPF was expressed in the brain and midgut of fly larvae and adults.  相似文献   

16.
Expression of a constitutively activated version of the heterotrimeric G protein alpha-subunit Galphas results in the swelling and vacuolization of a specific subset of ventral nerve cord motoneurons of Caenorhabditis elegans. A second site modifier (sgs-1) that completely suppresses this neuronal degeneration has been isolated. sgs-1 was cloned and was shown to encode an adenylyl cyclase which is most similar to mammalian adenylyl cyclase type IX. Mutations in sgs-1 change residues that are conserved among different adenylyl cyclases. These mutations are located in the two catalytic domains and in the first multiple transmembrane spanning region of the predicted protein. An sgs-1 reporter construct shows a general neuronal expression pattern, demonstrating that sgs-1 is expressed in the neurons that are susceptible to activated Galphas-induced cell death. A second C.elegans adenylyl cyclase gene (acy-2) was analyzed as well. In contrast to sgs-1, acy-2 shows a restricted expression pattern and loss of acy-2 function results in early larval lethality. These results suggest that SGS-1 is a target of Galphas signaling in motoneurons, whereas an interaction of Galphas with ACY-2, probably in the canal-associated neurons, is required for viability.  相似文献   

17.
We investigated the ability of the transposable element Tc1 to excise from the genome of the nematode Caenorhabditis elegans var. Bristol N2. Our results show that in the standard lab strain (Bristol), Tc1 excision occurred at a high frequency, comparable to that seen in the closely related Bergerac strain BO. We examined excision in the following way. We used a unique sequence flanking probe (pCeh29) to investigate the excision of Tc1s situated in the same location in both strains. Evidence of high-frequency excision from the genomes of both strains was observed. The Tc1s used in the first approach, although present in the same location in both genomes, were not known to be identical. Thus, a second approach was taken, which involved the genetic manipulation of a BO variant, Tc1(Hin). The ability of this BO Tc1(Hin) to excise was retained after its introduction into the N2 genome. Thus, we conclude that excision of Tc1 from the Bristol genome occurs at a high frequency and is comparable to that of Tc1 excision from the Bergerac genome. We showed that many Tc1 elements in N2 were apparently functionally intact and were capable of somatic excision. Even so, N2 Tc1s were prevented from exhibiting the high level of heritable transposition displayed by BO elements. We suggest that Bristol Tc1 elements have the ability to transpose but that transposition is heavily repressed in the gonadal tissue.  相似文献   

18.
We have determined the thermodynamic stability and peptide binding affinity of the carboxy-terminal Src homology 3 (SH3) domain from the Caenorhabditis elegans signal-transduction protein Sem-5. Despite its small size (62 residues) and lack of disulfide bonds, this domain is highly stable to thermal denaturation--at pH 7.3, the protein has a Tm of 73.1 degrees C. Interestingly, the protein is not maximally stable at neutral pH, but reaches a maximum at around pH 4.7 (Tm approximately equal to 80 degrees C). Increasing ionic strength also stabilizes the protein, suggesting that 1 or more carboxylate ions are involved in a destabilizing electrostatic interaction. By guanidine hydrochloride denaturation, the protein is calculated to have a free energy of unfolding of 4.1 kcal/mol at 25 degrees C. We have also characterized binding of the domain to 2 different length proline-rich peptides from the guanine nucleotide exchange factor, Sos, one of Sem-5's likely physiological ligands in cytoplasmic signal transduction. Upon binding, these peptides cause about a 2-fold increase in fluorescence intensity. Both bind with only modest affinities (Kd approximately equal to 30 microM), lower than some previous estimates for SH3 domains. By fluorescence, the domain also appears to associate with the homopolymer poly-L-proline in a similar fashion.  相似文献   

19.
20.
We used the polymerase chain reaction to detect insertions of the transposon Tc1 into mlc-2, one of two Caenorhabditis elegans regulatory myosin light chain genes. Our goals were to develop a general method to identify mutations in any sequenced gene and to establish the phenotype of mlc-2 loss-of-function mutants. The sensitivity of the polymerase chain reaction allowed us to identify nematode populations containing rare Tc1 insertions into mcl-2. mlc-2::Tc1 mutants were subsequently isolated from these populations by a sib selection procedure. We isolated three mutants with Tc1 insertions within the mlc-2 third exon and a fourth strain with Tc1 inserted in nearby noncoding DNA. To demonstrate the generality of our procedure, we isolated two additional mutants with Tc1 insertions within hlh-1, the C. elegans MyoD homolog. All of these mutants are essentially wild type when homozygous. Despite the fact that certain of these mutants have Tc1 inserted within exons of the target gene, these mutations may not be true null alleles. All three of the mlc-2 mutants contain mlc-2 mRNA in which all or part of Tc1 is spliced from the pre-mRNA, leaving small in-frame insertions or deletions in the mature message. There is a remarkable plasticity in the sites used to splice Tc1 from these mlc-2 pre-mRNAs; certain splice sites used in the mutants are very different from typical eukaryotic splice sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号