首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic deficiency of the glycogen-debranching enzyme (debrancher) causes glycogen storage disease type III (GSD III), which is divided into two subtypes: IIIa and IIIb. In GSD IIIb, glycogen accumulates only in the liver, whereas both liver and muscles are involved in GSD IIIa. The molecular basis for the differences between the two subtypes has not been fully elucidated. Recently, mutations in exon 3 of the debrancher gene were reported to be specifically associated with GSD IIIb. However, we describe a homozygous GSD IIIb patient without mutations in exon 3. Analysis of the patient’s debrancher cDNA revealed an 11-bp insertion in the normal sequence. An A to G transition at position –12 upstream of the 3′ splice site of intron 32 (IVS 32 A–12→G) was identified in the patient’s debrancher gene. No mutations were found in exon 3. Mutational analysis of the family showed the patient to be homozygous for this novel mutation as well as three polymorphic markers. Furthermore, the mother was heterozygous and the parents were first cousins. The acceptor splice site mutation created a new 3′ splice site and resulted in insertion of an 11-bp intron sequence between exon 32 and exon 33 in the patient’s debrancher mRNA. The predicted mutant enzyme was truncated by 112 amino acids as a result of premature termination. These findings suggested that a novel IVS 32 A–12→G mutation caused GSD IIIb in this patient. Received: 1 August 1997 / Accepted: 22 September 1997  相似文献   

2.

Background:

Glycogen storage disease type III is caused by mutations in both alleles of the AGL gene, which leads to reduced activity of glycogen-debranching enzyme. The clinical picture encompasses hypoglycemia, with glycogen accumulation leading to hepatomegaly and muscle involvement (skeletal and cardiac). We sought to identify the genetic cause of this disease within the Inuit community of Nunavik, in whom previous DNA sequencing had not identified such mutations.

Methods:

Five Inuit children with a clinical and biochemical diagnosis of glycogen storage disease type IIIa were recruited to undergo genetic testing: 2 underwent whole-exome sequencing and all 5 underwent Sanger sequencing to confirm the identified mutation. Selected DNA regions near the AGL gene were also sequenced to identify a potential founder effect in the community. In addition, control samples from 4 adults of European descent and 7 family members of the affected children were analyzed for the specific mutation by Sanger sequencing.

Results:

We identified a homozygous frame-shift deletion, c.4456delT, in exon 33 of the AGL gene in 2 children by whole-exome sequencing. Confirmation by Sanger sequencing showed the same mutation in all 5 patients, and 5 family members were found to be carriers. With the identification of this mutation in 5 probands, the estimated prevalence of genetically confirmed glycogen storage disease type IIIa in this region is among the highest worldwide (1:2500). Despite identical mutations, we saw variations in clinical features of the disease.

Interpretation:

Our detection of a homozygous frameshift mutation in 5 Inuit children determines the cause of glycogen storage disease type IIIa and confirms a founder effect.Glycogen storage disease type III is a rare autosomal recessive disease characterized by recurrent hypoglycemia in childhood, as well as hepatomegaly with elevated transaminases and hyperlipidemia.1 The disease involves a defect in the key glycogen debranching enzyme, which has 2 enzymatic activities (amylo-1,6-glucosidase and 4-α-glucanotransferase), resulting in reduced glycogen degradation, accumulation of limit dextrin in affected organs (primarily skeletal muscle, cardiac muscle and liver), organomegaly and dysfunction. Glycogen storage disease type IIIa involves the liver and cardiac and skeletal muscles, whereas glycogen storage disease type IIIb involves only the liver.Mutations in the AGL gene encoding glycogen debranching enzyme have been described in many populations, including Northern European,2 Egyptian,3 Hispanic2 and Asian;2 a high prevalence of the disease was also found in the North African Jewish community (1/5400) and in the Faroe Islands (1/3600).4,5 We previously described the presenting clinical characteristics of 4 Inuit children with putative glycogen storage disease type III and suspected the presence of a founder effect.6 However, targeted genetic analysis had failed to identify a mutation in the AGL gene. The aim of our present study was to identify the genetic cause of glycogen storage disease type III in the Inuit population of Nunavik on the eastern coast of Hudson Bay. By using exome sequencing, which examines all protein-encoding DNA sequences (exons), we hoped to facilitate early diagnosis, prenatal and neonatal screening and screening of family members.  相似文献   

3.
We identified a novel mutation in the CYP21A2 gene, a C to G substitution in the 7-position of the intron 2 acceptor splice site (c.290-7C>G), which causes a steroid 21-hydroxylase deficiency. The effect of the mutation on splicing was checked in the system of CYP21A minigene expression in cultured mammalian cells. The mutation impairs the use of the intron 2 acceptor splice site, resulting in intron retention in mRNA.  相似文献   

4.
Pompe disease or glycogen storage disease type II is a glycogen storage disorder associated with malfunction of the acid α-glucosidase enzyme (GAA; EC.3.2.1.3) leading to intracellular aggregations of glycogenin muscles. The infantile-onset type is the most life-threatening form of this disease, in which most of patients suffer from cardiomyopathy and hypotonia in early infancy. In this study, a typical case of Pompe disease was reported in an Iranian patient using molecular analysis of the GAA gene. Our results revealed a new c.1824_1828dupATACG mutation in exon 13 of the GAA gene. In conclusion, with the finding of this novel mutation, the genotypic spectrum of Iranian patients with Pompe disease has been extended, facilitating the definition of disease-related mutations.  相似文献   

5.
Characterization of exon skipping mutants of the COP1 gene from Arabidopsis   总被引:4,自引:1,他引:3  
The removal of introns from pre-mRNA requires accurate recognition and selection of the intron splice sites. Mutations which alter splice site selection and which lead to skipping of specific exons are indicative of intron/exon recognition mechanisms involving an exon definition process. In this paper, three independent mutants to the COP1 gene in Arabidopsis which show exon skipping were identified and the mutations which alter the normal splicing pattern were characterized. The mutation in cop1–1 was a G→A change 4 nt upstream from the 3′ splice site of intron 5, while the mutation in cop1–2 was a G→A at the first nucleotide of intron 6, abolishing the conserved G within the 5′ splice site consensus. The effect of these mutations was skipping of exon 6. The mutation in cop1–8 was G→A in the final nucleotide of intron 10 abolishing the conserved G within the 3′ splice site consensus and leading to skipping of exon 11. The splicing patterns surrounding exons 6 and 11 of COP1 in these three mutant lines of Arabidopsis provide evidence for exon definition mechanisms operating in plant splicing.  相似文献   

6.
7.
Two novel mutations in the glucokinase gene (GCK) have been identified in patients with maturity-onset diabetes of the young type-2 (MODY2), i.e., a C-for-G substitution at position ?1 of the acceptor splice site of intron 7 (c. 864-1G>C) and a synonymous c.666C>G substitution (GTC>GTG, p.V222V) at exon 6. An analysis of the splicing products obtained upon the transfection of human embryonic HEK293 cells with GCK minigene constructs carrying these mutations showed that both substitutions impaired normal splicing. As a result of c.864-1G>C, the usage of the normal acceptor site was blocked, which activated cryptic acceptor splice sites within intron 7 and generated several aberrant RNAs containing fragments of intron 7. The synonymous substitution c.666C>G created a novel donor splice site in exon 6, which results in the formation of an abnormal GCK mRNA with a 16-nucleotide deletion in exon 6. In vitro experiments on minigene splicing confirmed the inactivating effect of these mutations on glucokinase gene expression.  相似文献   

8.
Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder. It is caused by mutations in the NF1 gene, which comprises 60 exons and is located on chromosome 17q11.2. A total of 170 unrelated NF1 patients were screened for mutations in four exons by temperature-gradient gel electrophoresis. Preparatory work revealed the presence of a previously uncharacterized intron (19a) in what was previously designated exon 19; this allowed us to develop assays for genomic mutation screening in the newly defined exons 19a and 19b. Two novel NF1 mutations were detected: a single-base insertion in exon 19a creating a frameshift, and a second mutation affecting the splice donor site of intron 20 and leading to skipping of exon 20. A novel BsaBI polymorphism was identified in intron 19a. Received: 11 August 1997 / Accepted: 13 November 1997  相似文献   

9.
Pediatric intracranial calcification may be caused by inherited or acquired factors. We describe the identification of a novel rearrangement in which a downstream pseudogene translocates into exon 9 of OCLN, resulting in band-like brain calcification and advanced chronic kidney disease in early childhood. SNP genotyping and read-depth variation from whole exome sequencing initially pointed to a mutation in the OCLN gene. The high degree of identity between OCLN and two pseudogenes required a combination of multiplex ligation-dependent probe amplification, PCR, and Sanger sequencing to identify the genomic rearrangement that was the underlying genetic cause of the disease. Mutations in exon 3, or at the 5–6 intron splice site, of OCLN have been reported to cause brain calcification and polymicrogyria with no evidence of extra-cranial phenotypes. Of the OCLN splice variants described, all make use of exon 9, while OCLN variants that use exons 3, 5, and 6 are tissue specific. The genetic rearrangement we identified in exon 9 provides a plausible explanation for the expanded clinical phenotype observed in our individuals. Furthermore, the lack of polymicrogyria associated with the rearrangement of OCLN in our patients extends the range of cranial defects that can be observed due to OCLN mutations.  相似文献   

10.
11.
Monogenic hypobetalipoproteinemias include three disorders: abetalipoproteinemia (ABL) and chylomicron retention disease (CMRD) with recessive transmission and familial hypobetalipoproteinemia (FHBL) with dominant transmission. We investigated three unrelated Tunisian children born from consanguineous marriages, presenting hypobetalipoproteinemia associated with chronic diarrhea and retarded growth. Proband HBL-108 had a moderate hypobetalipoproteinemia, apparently transmitted as dominant trait, suggesting the diagnosis of FHBL. However, she had no mutations in FHBL candidate genes (APOB, PCSK9 and ANGPTL3). The analysis of MTTP gene was also negative, whereas SAR1B gene resequencing showed that the patient was homozygous for a novel mutation (c.184G>A), resulting in an amino acid substitution (p.Glu62Lys), located in a conserved region of Sar1b protein. In the HBL-103 and HBL-148 probands, the severity of hypobetalipoproteinemia and its recessive transmission suggested the diagnosis of ABL. The MTTP gene resequencing showed that probands HBL-103 and HBL-148 were homozygous for a nucleotide substitution in the donor splice site of intron 9 (c.1236+2T>G) and intron 16 (c.2342+1G>A) respectively. Both mutations were predicted in silico to abolish the function of the splice site. In vitro functional assay with splicing mutation reporter MTTP minigenes showed that the intron 9 mutation caused the skipping of exon 9, while the intron 16 mutation caused a partial retention of this intron in the mature mRNA. The predicted translation products of these mRNAs are non-functional truncated proteins.  相似文献   

12.
13.
Adenosine to inosine editing of mRNA from the human 5-HT2C receptor gene (HTR2C) occurs at five exonic positions (A–E) in a stable stem–loop that includes the normal 5′ splice site of intron 5 and is flanked by two alternative splice sites. Using in vitro editing, we identified a novel editing site (F) located in the intronic part of the stem–loop and demonstrated editing at this site in human brain. We have shown that in cell culture, base substitutions to mimic editing at different combinations of the six sites profoundly affect relative splicing at the normal and the upstream alternative splice site, but splicing at the downstream alternative splice site was consistently rare. Editing combinations in different splice variants from human brain were determined and are consistent with the effects of editing on splicing observed in cell culture. As RNA editing usually occurs close to exon/intron boundaries, this is likely to be a general phenomenon and suggests an important novel role for RNA editing.  相似文献   

14.
The X-linked form of Alport syndrome is caused by mutations in the COL4A5 gene in Xq22. This large multiexonic gene has, in the past, been difficult to screen, with several studies detecting only about 50% of mutations. We report three novel intronic mutations that may, in part, explain this poor success rate and demonstrate that single base changes deep within introns can, and do, cause disease: one mutation creates a new donor splice site within an intron resulting in the inclusion of a novel in-frame cryptic exon; a second mutation results in a new exon splice enhancer sequence (ESE) that promotes splicing of a cryptic exon containing a stop codon; a third patient exhibits exon skipping as a result of a base substitution within the polypyrimidine tract that precedes the acceptor splice site. All three cases would have been missed using an exon-by-exon DNA screening approach.  相似文献   

15.
16.
Direct DNA sequencing of the steroid 21-hydroxylase gene (CYP21) revealed two novel mutations in two patients with severe congenital adrenal hyperplasia. The nonsense mutation Trp23Stop (TGG → TGA) was found in a woman with the simple virilizing form of the disease. She was a compound heterozygote, with the previously described Ile173Asn mutation on her other allele. A boy, who developed salt-wasting in the neonatal period, carried an allele with a novel mutation of the canonical splice acceptor site in intron 1 (AG→GG). He was also a compound heterozygote, with the well-known splice mutation in intron 2 on his other allele. Received: 26 February 1996  相似文献   

17.
Tangier disease is a rare disorder of lipoprotein metabolism that presents with extremely low levels of HDL cholesterol and apoprotein A-I. It is caused by mutations in the ATP-binding cassette transporter A1 (ABCA1) gene. Clinical heterogeneity and mutational pattern of Tangier disease are poorly characterized. Moreover, also familial HDL deficiency may be caused by mutations in ABCA1 gene.ATP-binding cassette transporter A1 (ABCA1) gene mutations in a patient with Tangier disease, who presented an uncommon clinical history, and in his family were found and characterized. He was found to be compound heterozygous for two intronic mutations of ABCA1 gene, causing abnormal pre-mRNAs splicing. The novel c.1510-1G?>?A mutation was located in intron 12 and caused the activation of a cryptic splice site in exon 13, which determined the loss of 22 amino acids of exon 13 with the introduction of a premature stop codon. Five heterozygous carriers of this mutation were also found in proband's family, all presenting reduced HDL cholesterol and ApoAI (0.86?±?0.16?mmol/L and 92.2?±?10.9?mg/dL respectively), but not the typical features of Tangier disease, a phenotype compatible with the diagnosis of familial HDL deficiency. The other known mutation c.1195-27G?>?A was confirmed to cause aberrant retention of 25 nucleotides of intron 10 leading to the insertion of a stop codon after 20 amino acids of exon 11. Heterozygous carriers of this mutation also showed the clinical phenotype of familial HDL deficiency.Our study extends the catalog of pathogenic intronic mutations affecting ABCA1 pre-mRNA splicing. In a large family, a clear demonstration that the same mutations may cause Tangier disease (if in compound heterozygosis) or familial HDL deficiency (if in heterozygosis) is provided.  相似文献   

18.
19.
Regulation of calcitonin (CT)/calcitonin gene-related peptide (CGRP) RNA processing involves the use of alternative 3' terminal exons. In most tissues and cell lines, the CT terminal exon is recognized. In an attempt to define regulatory sequences involved in the utilization of the CT-specific terminal exon, we performed deletion and mutation analyses of a mini-gene construct that contains the CT terminal exon and mimics the CT processing choice in vivo. These studies identified a 127-nucleotide intron enhancer located approximately 150 nucleotides downstream of the CT exon poly(A) cleavage site that is required for recognition of the exon. The enhancer contains an essential and conserved 5' splice site sequence. Mutation of the splice site resulted in diminished utilization of the CT-specific terminal exon and increased skipping of the CT exon in both the mini-gene and in the natural CT/CGRP gene. Other components of the intron enhancer modified utilization of the CT-specific terminal exon and were necessary to prevent utilization of the 5' splice site within the intron enhancer as an actual splice site directing cryptic splicing. Conservation of the intron enhancer in three mammalian species suggests an important role for this intron element in the regulation of CT/CGRP processing and an expanded role for intronic 5' splice site sequences in the regulation of RNA processing.  相似文献   

20.
Loke KY  Lee YS  Lee WW  Poh LK 《Hormone research》2001,55(4):179-184
BACKGROUND: Congenital adrenal hyperplasia arising from 21-hydroxylase deficiency is associated with mutations in the CYP21 gene on chromosome 6p. This is the first report on the mutational spectrum of the CYP21 gene in Singapore. METHODS: To catalogue the mutations, ten exons of the CYP21 gene from 28 Singaporean patients were analyzed by PCR amplification and direct sequencing. RESULTS: Common mutations in descending order were the intron 2 splice site mutation (32.7% of the alleles), the I172N mutation (23.1% of the alleles), and the R356W mutation (19.2% of the alleles). Two potentially novel mutations were discovered: (1) duplication of 111 bp from codon 21 to codon 57 (exon 1) and (2) missense mutation (L261P, exon 7). There was generally a good genotype-phenotype correlation, allowing accurate prediction of the disease severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号