首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly purified preparations of bovine brain and rabbit nerve root neurofilaments were found to be lacking in protein kinase activity when either histone FIIA or the neurofilaments themselves were used as acceptors. There was no augmentation of activity in the presence of cyclic AMP. Addition of microtubule proteins prepared by cycles of assembly and disassembly resulted in phosphorylation of histone, phosphorylation of tubulin and the microtubule-associated proteins, and phosphorylation of neurofilament subunits. The phosphorylation of neurofilaments was predominantly in the 150,000-dalton species and was completely cyclic AMP dependent.  相似文献   

2.
2,5-Hexanedione (2,5-HD) induces central-peripheral axonpathy characterized by the accumulation of 10-nm neurofilaments proximal to the nodes of Ranvier and a Wallerian-type degeneration. It has been postulated that neurofilament crosslinking may be involved in the production of this axonopathy. A potential initiating event in this neurotoxic process may be the direct binding of 2,5-HD to neurofilament and microtubule proteins. In this study, the in vitro binding of [14C]2,5-HD to neurofilament and microtubule proteins was examined. Neurofilament proteins isolated from rat spinal cord or microtubule proteins isolated from rat brain were incubated in the presence of 2,5-HD at concentrations ranging 25 to 500 mM. Quantitative analysis of sodium dodecyl sulfate (SDS) polyacrylamide gels revealed a dose- and time-dependent binding of 2,5-HD to both neurofilament proteins and microtubule proteins. Expressed as pmol 2,5-HD bound per g protein, the observed relative binding was MAP2>NF160>NF200>NF68>tubulin. These data demonstrate the direct binding of 2,5-HD to cytoskeletal proteins including both neurofilaments and microtubules.  相似文献   

3.
Some properties of the protein kinase activity associated with neurofilaments isolated from the brain stem and spinal cord of rats have been investigated. The activity had an apparent Km for ATP of 20 microM, a pH optimum of 8.0 and phosphorylated both serine and threonine residues in neurofilament proteins. Cyclic AMP had no effect on the in vitro reaction and casein was a preferred exogenous substrate in comparison to histone. Phosphopeptide mapping of the 145 kDa subunit from neurofilaments phosphorylated in the presence and absence of microtubule proteins indicated that the neurofilament-associated activity was distinct from the microtubule-associated protein kinase. Limited proteolysis of neurofilaments with chymotrypsin indicated that the enzyme activity was not associated with a domain of the 200 kDa subunit which may form the side-arm projections on neurofilaments.  相似文献   

4.
Y Minami  H Sakai 《FEBS letters》1986,195(1-2):68-72
It has been revealed that neurofilaments stimulate polymerization of tubulin and thereby cause gelation. Addition of a very small amount of MAPs to the reaction mixture of tubulin and neurofilaments resulted in promotion of gelation. This could not be ascribed to MAP-induced cross-linking between microtubules and neurofilaments because further increases in the MAP concentration (still substoichiometric amount) resulted in total suppression of gelation. It is concluded that MAPs promote microtubule assembly independently of neurofilaments, and lower the concentration of tubulin available for neurofilament-induced polymerization, then preventing network formation.  相似文献   

5.
Mammalian neurofilaments prepared from brain and spinal cord by either of two methods partially inhibit the in vitro assembly of microtubules. This inhibition is shown to be due to the association of a complex of high molecular weight microtubule-associated proteins (MAP1 and MAP2) and tubulin with the neurofilament. Further analysis of the association reveals a saturable binding of purified brain MAPs to purified neurofilaments with a Kd of 10(-7) M. Purified astroglial filaments neither inhibit microtubule assembly nor show significant binding of MAPs. It is proposed that the MAPs might function as one element in a network of intraorganellar links in the cytoplasm.  相似文献   

6.
Two previously unrecognized features of neurofilament architecture are revealed by careful analysis of published neurofilament sequences. 1. The extreme C-terminus of the NF-M tail contains two highly conserved homologous sequences each of 15 amino acids, with the consensus EEK-V-TKKVEK-TS, plus another very closely related 7 amino acid sequence. 2. The C-terminus of NF-M contains sequences of consensus K-SP or K--SP which in some species are multiply repeated, are probably phosphorylated, but are distinct from the more obvious KSP repeated sequences. Sequences related to both the K-SP and K--SP sequences are found in NF-H, microtubule associated proteins tau and MAP2, suggesting a further level of immunological and potential evolutionary relationship between neurofilaments and these microtubule associated proteins. The possible significance of these findings is discussed.  相似文献   

7.
Axons from rats treated with the neurotoxic agent beta,beta'-iminodipropionitrile (IDPN) were examined by quick-freeze, deep-etch electron microscopy. Microtubules formed bundles in the central region of the axons, whereas neurofilaments were segregated to the periphery. Most membrane-bounded organelles, presumably including those involved in rapid axonal transport, were associated with the microtubule domain. The high resolution provided by quick-freeze, deep-etch electron microscopy revealed that the microtubules were coated with an extensive network of fine strands that served both to cross-link the microtubules and to interconnect them with the membrane-bounded organelles. The strands were decorated with granular materials and were irregular in dimension. They appeared either singly or as an extensive anastomosing network in fresh axons. The microtubule-associated strands were observed in fresh, saponin-extracted, or aldehyde-fixed tissue. To explore further the identity of the microtubule-associated strands, microtubules purified from brain tissue and containing the high molecular weight microtubule-associated proteins MAP 1 and MAP 2 were examined by quick-freeze, deep-etch electron microscopy. The purified microtubules were connected by a network of strands quite similar in appearance to those observed in the IDPN axons. Control microtubule preparations consisting only of tubulin and lacking the MAPs were devoid of associated strands. To learn which of the MAPs were present in the microtubule bundles in the axon, sections of axons from IDPN-treated rats were examined by immunofluorescence microscopy using antibodies to MAP 1A, MAP 1B, MAP 2, and tubulin. Anti-MAP 2 staining was only marginally detectable in the IDPN-treated axons, consistent with earlier observations. Anti-MAP 1A and anti-MAP 1B brightly stained the IDPN-treated axons, with the staining exclusively limited to the microtubule domains. Furthermore, thin section-immunoelectron microscopy using colloidal gold-labeled second antibodies revealed that both anti-MAP 1A and anti-MAP 1B stained fuzzy filamentous structures between microtubules. In view of earlier work indicating that rapid transport is associated with the microtubule domain in the IDPN-treated axon, it now appears that MAP 1A and MAP 1B may play a role in this process. We believe that MAP 1A and MAP 1B are major components of the microtubule-associated fibrillar matrix in the axon.  相似文献   

8.
In neurons, a highly regulated microtubule cytoskeleton is essential for many cellular functions. These include axonal transport, regional specialization and synaptic function. Given the critical roles of microtubule-associated proteins (MAPs) in maintaining and regulating microtubule stability and dynamics, we sought to understand how this regulation is achieved. Here, we identify a novel LisH/WD40 repeat protein, tentatively named nemitin (neuronal enriched MAP interacting protein), as a potential regulator of MAP8-associated microtubule function. Based on expression at both the mRNA and protein levels, nemitin is enriched in the nervous system. Its protein expression is detected as early as embryonic day 11 and continues through adulthood. Interestingly, when expressed in non-neuronal cells, nemitin displays a diffuse pattern with puncta, although at the ultrastructural level it localizes along the microtubule network in vivo in sciatic nerves. These results suggest that the association of nemitin to microtubules may require an intermediary protein. Indeed, co-expression of nemitin with microtubule-associated protein 8 (MAP8) results in nemitin losing its diffuse pattern, instead decorating microtubules uniformly along with MAP8. Together, these results imply that nemitin may play an important role in regulating the neuronal cytoskeleton through an interaction with MAP8.  相似文献   

9.
Estramustine phosphate, an estradiol nitrogen-mustard derivative is a microtubule-associated protein (MAP)-binding microtubule inhibitor, used in the therapy of prostatic carcinoma. It was found to inhibit assembly and to induce disassembly of microtubules reconstituted from phosphocellulose-purified tubulin with either tau, microtubule-associated protein 2, or chymotrypsin-digested microtubule-associated protein 2. Estramustine phosphate also inhibited assembly of trypsin-treated microtubules, completely depleted of high-molecular-weight microtubule-associated proteins, but with their microtubule-binding fragment present. In all cases estramustine phosphate induced disassembly to about 50%, at a concentration of approximately 100 microM, at similar protein concentrations. However, estramustine phosphate did not affect dimethyl sulfoxide-induced assembly of phosphocellulose-purified tubulin. Estramustine phosphate is a reversible inhibitor, as the nonionic detergent Triton X-100 was found to counteract the inhibition in a concentration-dependent manner. The reversibility was nondisruptive, as Triton X-100 itself did not affect microtubule assembly, microtubule protein composition, or morphology. This new reversible MAPs-dependent inhibitor estramustine phosphate affects the tubulin assembly, induced by tau, as well as by the small tubulin-binding part of MAP2 with the same concentration dependency. This indicates that tau and the tubulin-binding part of MAP2, in addition to their assembly promoting functions also have binding site(s) for estramustine phosphate in common.  相似文献   

10.
Decreased phosphorylation of neurofilaments in mice lacking myelin-associated glycoprotein (MAG) was shown to be associated with decreased activities of extracellular-signal regulated kinases (ERK1/2) and cyclin-dependent kinase-5 (cdk5). These in vivo changes could be caused directly by the absence of a MAG-mediated signaling pathway or secondary to a general disruption of the Schwann cell-axon junction that prevents signaling by other molecules. Therefore, in vitro experimental paradigms of MAG interaction with neurons were used to determine if MAG directly influences expression and phosphorylation of cytoskeletal proteins and their associated kinases. COS-7 cells stably transfected with MAG or with empty vector were co-cultured with primary dorsal root ganglion (DRG) neurons. Total amounts of the middle molecular weight neurofilament subunit (NF-M), microtubule-associated protein 1B (MAP1B), MAP2, and tau were up-regulated significantly in DRG neurons in the presence of MAG. There was also increased expression of phosphorylated high molecular weight neurofilament subunit (NF-H), NF-M, and MAP1B. Additionally, in similar in vitro paradigms, total and phosphorylated NF-M were increased significantly in PC12 neurons co-cultured with MAG-expressing COS cells or treated with a soluble MAG Fc-chimera. The increased expression of phosphorylated cytoskeletal proteins in the presence of MAG in vitro was associated with increased activities of ERK 1/2 and cdk5. We propose that interaction of MAG with an axonal receptor(s) induces a signal transduction cascade that regulates expression of cytoskeletal proteins and their phosphorylation by these proline-directed protein kinases.  相似文献   

11.
In vertebrates the microtubule-associated proteins MAP6 and MAP6d1 stabilize cold-resistant microtubules. Cilia and flagella have cold-stable microtubules but MAP6 proteins have not been identified in these organelles. Here, we describe TbSAXO as the first MAP6-related protein to be identified in a protozoan, Trypanosoma brucei. Using a heterologous expression system, we show that TbSAXO is a microtubule stabilizing protein. Furthermore we identify the domains of the protein responsible for microtubule binding and stabilizing and show that they share homologies with the microtubule-stabilizing Mn domains of the MAP6 proteins. We demonstrate, in the flagellated parasite, that TbSAXO is an axonemal protein that plays a role in flagellum motility. Lastly we provide evidence that TbSAXO belongs to a group of MAP6-related proteins (SAXO proteins) present only in ciliated or flagellated organisms ranging from protozoa to mammals. We discuss the potential roles of the SAXO proteins in cilia and flagella function.  相似文献   

12.
Two monoclonal antibodies that recognize Alzheimer's neurofibrillary tangles (ANTs), AD10 and AB18, have been characterized by immunoblotting against human and calf spinal cord neurofilament (NF) and calf brain microtubule preparations. Both antibodies bind to the 200-kilodalton (kd) (NF-H) and 160-kd (NF-M) but not to the 68-kd (NF-L) NF triplet proteins. They also bind to high-molecular-weight microtubule-associated proteins (MAPs) and tau. AD10 immunostains MAP2 and MAP1 families, whereas AB18 stains mainly MAP1 bands. Preincubation of intact filament preparation or nitrocellulose strips containing electroblotted NF proteins with Escherichia coli alkaline phosphatase completely blocks AD10 binding and partially blocks binding of AB18. These results suggest that the determinants recognized by these antibodies are phosphorylated. Immunoblotting of peptide fragments generated by limited proteolysis of NF proteins with alpha-chymotrypsin and Staphylococcus aureus V8 protease shows that the localization of the antigenic determinants to AD10 and AB18 in NF-H is approximately 100 and 60 kd, respectively, away from the carboxy terminal, a region previously shown to form the NF projection side arm. In NF-M, the antigenic determinants to both antibodies are located also in the projection side arm, in a 60-kd polypeptide adjacent to the alpha-helical filament core. The results show that ANTs contain at least two phosphorylated antigenic sites that are present in NF and MAPs, a finding suggesting that ANTs may be composed of proteins or their fragments with epitopes shared by cytoskeletal proteins.  相似文献   

13.
Effect of tau on the vinblastine-induced aggregation of tubulin   总被引:3,自引:2,他引:1       下载免费PDF全文
Two microtubule-associated proteins, tau and the high molecular weight microtubule-associated protein 2 (MAP 2), were purified from rat brain microtubules. Addition of either protein to pure tubulin caused microtubule assembly. In the presence of tau and 10 microM vinblastine, tubulin aggregated into spiral structures. If tau was absent, or replaced by MAP 2, little aggregation occurred in the presence of vinblastine. Thus, vinblastine may be a useful probe in elucidating the individual roles of tau and MAP 2 in microtubule assembly.  相似文献   

14.
The cold non-depolymerizable fractions obtained during the standard procedure for the isolation of microtubules from ox brain stem-cerebral hemispheres and spinal cord have been studied. The cerebral-hemisphere preparation was composed of 10-nm filaments but also contained large amounts of membranes. The polypeptide content included tubulin, microtubule-associated proteins and minor proteins corresponding to the neurofilament triplet of proteins of mol.wt. 210 000, 160 000 and 70 000 respectively. The brain-stem preparation contained more 10-nm filaments than membranes. The polypeptide content consisted of the neurofilament triplet (35%), tubulin (30%) and minor proteins. In contrast, the spinal-cord preparation was mainly composed of 10-nm filaments, free of membranes and containing essentially the neurofilament protein triplet (64%). These filaments appeared very similar to the peripheral-nervous-system neurofilaments described by several authors. Since the best neurofilament from the central nervous system often contained less than 15% of the neurofilament protein triplet, our spinal-cord preparation is an improvement on the usual neurofilament preparation. This simple and rapid method gave large amounts of 10-nm filaments (100 mg per 100 g of spinal cord) characterized by the absence of membranous material, a low content of tubulin and the 50 000-mol.wt.-protein component, and a high content of neurofilament peptides. Thus, the presence of tubulin in 10-nm filament preparations seems to be related to the contaminant membranous material and not to be linked to the interaction in vitro of tubulin or microtubules with neurofilaments, as has been suggested previously.  相似文献   

15.
Neurofilaments freshly isolated from bovine spinal cord form a reversible gel in vitro, consisting of nearly parallel and interlinked filaments organized in bundles. This phenomenon is obtained above a critical neurofilament concentration and is highly sensitive to denaturation. No gelation occurs with neurofilaments reconstituted from urea-solubilized subunits. The velocity of the gelation kinetics, optimum at a slightly acidic pH, is inhibited by low and high ionic strength and activated by millimolar concentrations of Mg2+ and other bivalent cations. No protein other than the purified neurofilament preparation itself (80-95% neurofilament triplet) is necessary for the formation of a gel. However, purified cytoskeletal proteins from microtubules and neurofilaments influence the viscosity of the native preparation. These observations suggest a reticulation in vitro between neurofilaments, dependent upon a fragile conformation of the polymers and possibly mediated through the high-Mr neurofilament subunits (200 kDa and 150 kDa). The significance of these results is discussed with regard to the inter-neurofilament cross-bridging in situ involving the 200 kDa subunit described by Hirokawa, Glicksman & Willard [(1984) J. Cell Biol. 98, 1523-1536].  相似文献   

16.
再生神经中微管,神经丝与轴突截面积的变化   总被引:2,自引:0,他引:2  
用电镜及图象分析的方法研究了再生轴突中微管、神经丝与轴突截面积的变化,发现神经再生过程中微管及神经丝的密度增加,并与轴突截面积呈相关关系,而且微管的变化更早,更明显。由于微管参与了轴浆转运的机制,微管的增加提示其在神经再生中起了重要的作用。  相似文献   

17.
Nerve growth factor induces neurite process formation in pheochromacytoma (PC12) cells and causes the parallel increase in levels of the microtubule-associated proteins, tau and MAP1, as well as increases in tubulin levels. Mechanisms to insure balanced accumulation of microtubule proteins and make their levels highly responsive to nerve growth factor were investigated. The effects on tau, MAP1, and tubulin are due to changes in protein synthesis rates, which for tau and tubulin we could show are due in part to changes in the mRNA levels. Whereas tubulin shows feedback regulation to modulate synthesis up or down, tau protein synthesis is not affected in a straightforward way by microtubule polymerization and depolymerization. The degradation of tau, MAP1, and both tubulin polypeptides, however, are stimulated by microtubule depolymerization caused by colchicine, or nerve growth factor removal. Combined feedback on synthesis and stability make tubulin levels highly responsive to assembly states. In addition, the linkage of tau and MAP1 turnover with the state of microtubule polymerization amplifies any change in their rate of synthesis, since tau and MAP1 promote microtubule polymerization. This linkage lends itself to rapid changes in the state of the system in response to nerve growth factor.  相似文献   

18.
Abstract: Isolated microtubule-associated protein 2 (MAP2), τ factor, and tubulin were phosphorylated by a purified Ca2+, calmodulin-dependent protein kinase (640K enzyme) from rat brain. The phosphorylation of MAP2 and τ factor separately induced the inhibition of microtubule assembly, in accordance with the degree. Tubulin phosphorylation by the 640K enzyme induced the inhibition of microtubule assembly, whereas the effect of tubulin phosphorylation by the catalytic subunit was undetectable. The effects of tubulin and MAPs phosphorylation on microtubule assembly were greater than that of either tubulin or MAPs phosphorylation. Because MAP2, τ factor, and tubulin were also phosphorylated by the catalytic subunit of type-II cyclic AMP-dependent protein kinase from rat brain, the kinetic properties and phosphorylation sites were compared. The amount of phosphate incorporated into each microtubule protein was three to five times higher by the 640K enzyme than by the catalytic subunit. The K m values of the 640K enzyme for microtubule proteins were four to 24 times lower than those of the catalytic subunit. The peptide mapping analysis showed that the 640K enzyme and the catalytic subunit incorporated phosphate into different sites on MAP2, τ factor, and tubulin. Investigation of phosphoamino acids revealed that only the seryl residue was phosphorylated by the catalytic subunit, whereas both seryl and threonyl residues were phosphorylated by the 640K enzyme. These data suggest that the Ca2+, calmodulin system via phosphorylation of MAP2, τ factor, and tubulin by the 640K enzyme is more effective than the cyclic AMP system on the regulation of microtubule assembly.  相似文献   

19.
The elaboration of neuronal axons and dendrites is dependent on a functional cytoskeleton. Cytoskeletal components have been shown to play a major role in the maintenance of the nervous system through adulthood, and changes in neurofilaments and microtubule-associated proteins (MAPs) have been linked to a variety of neurodegenerative diseases. Here we show that Futsch, the fly homolog of MAP1B, is involved in progressive neurodegeneration. Although Futsch is widely expressed throughout the CNS, degeneration in futsch(olk) primarily occurs in the olfactory system and mushroom bodies. Consistent with the predicted function of Futsch, we find abnormalities in the microtubule network and defects in axonal transport. Degeneration in the adult brain is preceded by learning deficits, revealing a neuronal dysfunction before detectable levels of cell death. Futsch is negatively regulated by the Drosophila Fragile X mental retardation gene, and a mutation in this gene delays the onset of neurodegeneration in futsch(olk). A similar effect is obtained by expression of either fly or bovine tau, suggesting a certain degree of functional redundancy of MAPs. The futsch(olk) mutants exhibit several characteristics of human neurodegenerative diseases, providing an opportunity to study the role of MAPs in progressive neurodegeneration within an experimentally accessible, in vivo model system.  相似文献   

20.
Matters Arising     
Abstract: The possibility that neurofilaments could be involved in the transduction of chemical and mechanical energy in axons led us to investigate whether neurofilament proteins can hydrolyze ATP. We fractionated neurofilaments from rabbit spinal cord and found that preparations highly enriched for neurofilament proteins hydrolyzed ATP at a substantial rate (as high as 0.4 μmol/min/mg protein). However, the ATPase activity was neither inhibited by anti-neurofilament antibody, nor was it precipitated by the antibody under circumstances that precipitated most of the neurofilament polypeptides. We conclude that neurofilament proteins do not hydrolyze ATP at a significant rate under the conditions of our assay; if hydrolysis of ATP is a physiological function of neurofilaments, additional factors are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号