首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NK cells lyse certain tumor cell targets but the effector cell surface molecules responsible for this reactivity remain uncertain. The allotypic NK1.1 Ag is the most specific serologic marker on murine cells that display non-MHC-restricted cytolysis of tumor cell targets, but no function has been previously ascribed to this Ag. In this report, we demonstrate that, in the presence of a mAb specific for the NK1.1 Ag (mAb PK136), freshly isolated and IL-2-activated NK cells from C57BL/6 mice can be induced to lyse an otherwise resistant target cell, Daudi. This phenomenon is effector and mAb specific because NK cells derived from BALB/c mice do not express the NK1.1 Ag and cannot be triggered by mAb PK136. We demonstrate that IL-2 activated but not freshly isolated NK cells express the Ly-6 and VEA Ag, originally described as T cell activation Ag. Moreover, mAb specific for Ly-6 and VEA induce target cell lysis by IL-2 activated but not freshly isolated NK cells. These mAb effects are specific, concentration dependent, and display kinetics that are similar to spontaneous cytolysis of NK-sensitive targets. The Fc portion of the activating antibodies and only FcR bearing target cells participate in mAb-induced activation, consistent with the mechanism of redirected lysis. Finally, analysis of Daudi cells transfected with beta 2-microglobulin gene demonstrate that the expression of MHC class I Ag by the target cell does not affect its sensitivity to mAb-induced lysis by NK cells. These data demonstrate that the NK1.1 Ag is functionally active on both freshly isolated and IL-2-activated NK cells and that IL-2-activated NK cells possess additional pathways of specific stimulation.  相似文献   

2.
We provide evidence that tumor cells can induce apoptosis of NK cells by engaging the natural cytotoxicity receptors (NCR) NKp30, NKp44, and NKp46. Indeed, the binding between NCR on NK cells and their putative ligands on tumor target cells led to NK cell apoptosis, and this event was abolished by blocking NCR/NCR-ligand interaction by anti-NCR-specific mAbs. The engagement of NCR induced up-regulation of Fas ligand (FasL) mRNA, FasL protein synthesis, and release. In turn, FasL interacting with Fas at NK cell surface causes NK cell suicide, as apoptosis of NK cells was inhibited by blocking FasL/Fas interaction with specific mAbs. Interestingly, NK cell apoptosis, but not killing of tumor target cells, is inhibited by cyclosporin A, suggesting that apoptosis and cytolysis are regulated by different biochemical pathways. These findings indicate that NCR are not only triggering molecules essential for antitumor activity, but also surface receptors involved in NK cell suicide.  相似文献   

3.
Anti-CD3 MAb can inhibit MHC-restricted cytolytic activity of CD3+ mature cytotoxic T cells. In particular effector-target cell combinations, however, anti-CD3 MAb enhance or induce cytolysis by cross-linking CD3+ effector and IgG-FcR+ target cells. Virtually all natural killer (NK) cells or NK cell-derived clones are CD3-4-8- but do express CD2 and CD16 (IgG-FcR) antigens. We have studied how these cell surface molecules are involved in the regulation of cytolytic activities. The addition of anti-CD2 MAb to effector and target cells was found to induce conjugate formation of the IgG-FcR+ target cells with the effector cell and nonspecific cytolysis of, for instance, the P815 mouse mastocytoma cells. Enhancement or induction of conjugate formation and cytolysis of IgG-FcR+, P815, U937, and Daudi cells was also accomplished by using anti-CD16 MAb (e.g., Leu-11c (B73.1) or CLB Fc-gran 1 (VD2) MAb). Some human and mouse tumor cell lines (K562, P815, and U937) appear to express distinct types of IgG-FcR, showing different affinities for distinct subclasses of MAb (e.g., IgG1, IgG2a), but another line (Daudi) expresses only one type of IgG-FcR preferentially binding IgG1 MAb. Here we demonstrate that IgG-FcR on the effector cells can act as activation sites because anti-CD3 as well as anti-CD16 MAb of IgG1 and IgG2a subclasses can induce lytic activity of target cells bearing the relevant IgG-FcR. These data demonstrate that induction of conjugate formation and cytolysis by MAb occur when the target cells bear IgG-FcR with "specificity" for those MAb. Thus, besides via CD3, cytolytic activity by mature T and NK cells also can be induced via the CD2 and CD16 antigens on these cells.  相似文献   

4.
Distinct requirements for IFNs and STAT1 in NK cell function   总被引:9,自引:0,他引:9  
NK cell functions were examined in mice with a targeted mutation of the STAT1 gene, an essential mediator of IFN signaling. Mice deficient in STAT1 displayed impaired basal NK cytolytic activity in vitro and were unable to reject transplanted tumors in vivo, despite the presence of normal numbers of NK cells. IL-12 enhanced NK-mediated cytolysis, but poly(I:C) did not, and a similar phenotype occurred in mice lacking IFNalpha receptors. Molecules involved in activation and lytic function of NK cells (granzyme A, granzyme B, perforin, DAP10, and DAP12) were expressed at comparable levels in both wild-type and STAT1(-/-) mice, and serine esterase activity necessary for CTL function was normal, showing that the lytic machinery was intact. NK cells with normal cytolytic activity could be derived from STAT1(-/-) bone marrow progenitors in response to IL-15 in vitro, and enhanced NK lytic activity and normal levels of IFN-gamma were produced in response to IL-12 treatment in vivo. Despite these normal responses to cytokines, STAT1(-/-) mice could not reject the NK-sensitive tumor RMA-S, even following IL-12 treatment in vivo. Whereas in vitro NK cytolysis was also reduced in mice lacking both type I and type II IFN receptors, these mice resisted tumor challenge. These results demonstrate that both IFN-alpha and IFN-gamma are required to maintain NK cell function and define a STAT1-dependent but partially IFN-independent pathway required for NK-mediated antitumor activity.  相似文献   

5.
In NK cell-mediated cytolysis, the degranulation of the NK cell, and the binding and polymerization of its effector molecule cytolysin/perforin, are Ca2+ dependent. To determine if increases in the target cell free intracellular Ca2+ concentration ([Ca2+]i) are also important for cytotoxicity, we examined the effects of Ca2+ substitutes, promotors of Ca2+ influx; and inhibitors of Ca2+ efflux on the cytolysis mediated by purified cytolysin. Ca2+ promoted cytolysin-mediated cytolysis but could also inactivate cytolysin on preincubation in the absence of target cells. Ba2+ and Sr2+ could not alone promote cytolysin-mediated cytolysis but did enhance Ca2(+)-driven cytolysis. Preincubation with Ba2+ and Sr2+ did not inactivate cytolysin. One interpretation which these results suggested was that neither Ba2+ nor Sr2+ were involved in cytolysin polymerization and pore formation, but could act intracellularly as Ca2+ analogs once pore formation had occurred. The synergistic interaction of cytolysin and the Ca2+ ionophore A23187 further supported a role for increased [Ca2+]i in cytolysis. Inhibitors of Na+/Ca2+ exchange, namely low Na+ medium, ouabain, and the amiloride analogs 2',4'-dimethylbenzamil, 5-(N-4-chlorobenzyl)-2',4'dimethylbenzamil, and alpha-phenylbenzamil all markedly enhanced cytolysin-mediated cytolysis. These results support the hypothesis that the Ca2+ dependency of NK cell- and cytolysin-mediated cytolysis is related to increases in target cell [Ca2+]i. Furthermore, they indicate that Na+/Ca2+ exchange is an important counterlytic mechanism.  相似文献   

6.
IFNalpha regulates NK cell cytotoxicity through STAT1 pathway   总被引:2,自引:0,他引:2  
Liang S  Wei H  Sun R  Tian Z 《Cytokine》2003,23(6):190-199
  相似文献   

7.
We have previously reported that tumoricidal rat macrophages can distinguish quiescent normal lymphocytes from concanavalin A (Con A)-stimulated lymphocytes and thymic lymphoma cells on the basis of their ability to compete for the macrophage-dependent cytolysis of a sensitive tumor cell line. The present study was undertaken to determine (a) whether recognition was related to the proliferative response induced by Con A stimulation and (b) whether the competition of cytolysis was dependent upon the binding of sensitive target cells to activated macrophages. These possibilities were tested by examining Con A-treated lymphocytes in different functional stages of the Con A response with respect to their ability to compete either for cytolysis or binding of a tumor cell line susceptible to both activities. The results show that the ability to compete for either function was acquired coincidentally with the Con A-induced proliferative response. This competitive activity was not due solely to the presence of Con A in the culture medium nor to culture of unstimulated lymphocytes but rather required a blastogenic response to the mitogen. Blast-transformed nonproliferative cells (96 hr post-Con A stimulation) were as competitive as cells which had been stimulated to reinitiate DNA replication by treatment with Interleukin 2. Thus, competition for cytolysis is a consequence of blastogenesis rather than proliferation per se and operates mechanistically by competing for the binding of target cells to activated macrophages, an event known to be a necessary prerequisite to cytolysis.  相似文献   

8.
To test the hypothesis that susceptibility to NK cell-mediated cytolysis varies inversely with the levels of target cell class I HLA expression, NK-susceptible K562 and MOLT-4 target cells have been transfected via electroporation with cloned human class I HLA-A2 and HLA-B7 genes. Stably transfected cells expressing varying levels of cell-surface class I HLA have been selected by fluorescent activated cell sorting and tested for susceptibility to NK-mediated cytolysis by freshly isolated peripheral blood NK cells from nine normal volunteers as well as by cloned human NK effectors and tumor cells from a patient with an NK cell lymphoproliferative disorder. Expression of class I HLA did not alter the susceptibility of K562 or MOLT-4 target cells to NK-mediated cytolysis by any of the effectors tested. In addition, the class I HLA-expressing transfectant cells were identical to mock transfected cells in their ability to compete for lysis in cold target inhibition assays. Treatment of both mock-transfected and class I HLA-transfected K562 cells with IFN-gamma resulted in decreased susceptibility to NK-mediated cytolysis which was independent of the total level of class I HLA expression. These results demonstrate that the level of target cell class I HLA expression is not sufficient to determine susceptibility or resistance to NK-mediated cytolysis of the classical NK targets K562 and MOLT-4.  相似文献   

9.
Tumor cells stimulate natural killer (NK) cell effector functions, but the regulation of cytokine secretion and cytolysis is incompletely understood. We tested whether oral and pharyngeal squamous cell carcinoma cell lines differentially stimulated NK cell interferon-gamma (IFN-gamma) secretion and cytolysis using a clone of the NK-92-transformed human NK cell line, NK92.35. SCC-4 and SCC-25 cells, but not FaDu or Cal 27 cells, stimulated robust NK92.35 IFN-gamma secretion. All four carcinoma cell lines were lysed by NK92.35 cells. These findings indicate that carcinoma cells differentially stimulate NK cell IFN-gamma secretion and cytolysis. In Transwell experiments, a combination of SCC-4 or SCC-25 cell soluble factors and contact with FaDu cells synergistically stimulated NK92.35 cell IFN-gamma secretion. Stimulatory SCC-4 cells constitutively secreted IL-18, a cytokine that potently augments IFN-gamma secretion by T cells and NK cells. In contrast, poorly stimulatory FaDu cells produced little or no IL-18, but synergized with recombinant IL-18 to stimulate NK92.35 IFN-gamma secretion. mAb to IL-18 or IL-18 receptor diminished SCC-4-stimulated IFN-gamma secretion by NK92.35 cells and by nontransformed NK cells. Thus, IL-18 was necessary for optimal carcinoma stimulation of NK cell IFN-gamma secretion. In vivo, oral and upper aerodigestive tract epithelia and carcinomas produced IL-18, but one squamous cell carcinoma had heterogeneous IL-18 expression. Thus IL-18 production can account for squamous cell carcinoma differential stimulation of NK cell effector functions in vitro and may be important for stimulation of NK cells in vivo.  相似文献   

10.
To evaluate the capability of NK cells and cytotoxic T lymphocytes to interact with normal hematopoietic progenitor cells (HPC), as compared to neoplastic lymphohematopoietic cells, we investigated inhibition of colony growth of these cell populations in semi-solid culture systems, after incubation with cloned cytotoxic effector cells. Three different types of cloned effector cells were investigated: TCR-/CD3- NK cells, TCR-gamma delta+/CD3+ cells, and TCR-alpha beta+/CD3+ cytotoxic T lymphocytes. Effector cells showed differential levels of tumor cell colony inhibition, but no MHC-non-restricted lysis of normal HPC was observed. Pre-stimulation of normal HPC by culturing on established stromal layers had no effect. Cell-mediated lysis of HPC only occurred by Ag-specific MHC-restricted lysis by CTL, or by antibody-dependent cellular cytotoxicity. In cell mixing experiments, irradiated tumor cells, but not normal bone marrow cells inhibited tumor cell lysis. Furthermore, cloned effector lymphocytes were able to specifically eliminate malignant cells from tumor contaminated bone marrow without damaging normal HPC. When fresh leukemic cells were used as targets, growth of acute myeloblastic leukemia colonies was inhibited after incubation with several cytotoxic effector clones, whereas chronic myeloid leukemia precursor cells showed limited sensitivity to MHC-non-restricted cytolysis. These results indicate that MHC-non-restricted cytolysis by NK cells is selectively directed against neoplastic cells and not against normal HPC.  相似文献   

11.
Zhou Z  Zhang C  Zhang J  Tian Z 《PloS one》2012,7(5):e36928
Natural killer (NK) cells and their crosstalk with other immune cells are important for innate immunity against tumor. To explore the role of the interaction between NK cells and macrophages in the regulation of anti-tumor activities of NK cells, we here demonstrate that poly I:C-treated macrophages increased NK cell-mediated cytotoxicity against target tumor cells in NKG2D-dependent manner. In addition, IL-15, IL-18, and IFN-β secreted by poly I:C-treated macrophages are also involved in NKG2D expression and NK cell activation. Interestingly, the increase in expression of NKG2D ligands on macrophages induced a highly NK cell-mediated cytotoxicity against tumor cells, but not against macrophages themselves. Notably, a high expression level of Qa-1, a NKG2A ligand, on macrophages may contribute to such protection of macrophages from NK cell-mediated killing. Furthermore, Qa-1 or NKG2A knockdown and Qa-1 antibody blockade caused the macrophages to be sensitive to NK cytolysis. These results suggested that macrophages may activate NK cells to attack tumor by NKG2D recognition whereas macrophages protect themselves from NK lysis via preferential expression of Qa-1.  相似文献   

12.
Increased secretion of H2O2, O2- and lysozyme by human monocytes in vitro on treatment with cisplatin, rIFN-Y (interferon-Y), LPS (lipopolysaccharide) and MDP (muramyl dipeptide) is reported. It is suggested that increased production of these secretory products represent the activated state of monocytes. These in vitro activated monocytes could either kill the tumor cells via increased contact mediated cytolysis or cytolysis mediated via the release of the secretory products like H2O2, O2- and lysozyme.  相似文献   

13.
Tonsil B cells were analyzed for their capacity to interact directly with NK cells in vitro. A specific, direct interaction between NK cells and B cells could be detected by direct conjugation and by cold target inhibition using the B lymphoblastoid cell line BJA.B as a labeled target. The data further suggest that the B cell interaction with NK cells specifically activates the NK effectors and induces their production of IFN-gamma. The NK-interactive population of tonsil B cells were characterized as low-buoyant density cells (by Percoll gradient fractionation) that stained more brightly with Hoechst 33342, both characteristics of activated B cells. Immunofluorescent staining of NK cell-B cell conjugates allowed determination of the cell-surface antigenic phenotype of conjugate-forming B cells. B cell targets were ICAM-1bri, 4F2+, TfR+, CD32+, BB1+, and CD77-. They tended to be CD38-, but overlapped the CD38+ population. No correlation was seen with CD37, CD44, CD75, CD76, HC2, or Ig kappa. This phenotype is most consistent with a late activation stage of differentiation, just before and overlapping the expression of CD38. These B cells do not appear significantly sensitive to NK-mediated cytolysis, suggesting that NK cell cytokine synthesis and secretion (e.g., IFN-gamma) may be more important in the NK cell regulation of the humoral response.  相似文献   

14.
Human CD8+ T cells activated and expanded by TCR cross-linking and high-dose IL-2 acquire potent cytolytic ability against tumors and are a promising approach for immunotherapy of malignant diseases. We have recently reported that in vitro killing by these activated cells, which share phenotypic and functional characteristics with NK cells, is mediated principally by NKG2D. NKG2D is a surface receptor that is expressed by all NK cells and transmits an activating signal via the DAP10 adaptor molecule. Using stable RNA interference induced by lentiviral transduction, we show that NKG2D is required for cytolysis of tumor cells, including autologous tumor cells from patients with ovarian cancer. We also demonstrated that NKG2D is required for in vivo antitumor activity. Furthermore, both activated and expanded CD8+ T cells and NK cells use DAP10. In addition, direct killing was partially dependent on the DAP12 signaling pathway. This requirement by activated and expanded CD8+ T cells for DAP12, and hence stimulus from a putative DAP12-partnered activating surface receptor, persisted when assayed by anti-NKG2D Ab-mediated redirected cytolysis. These studies demonstrated the importance of NKG2D, DAP10, and DAP12 in human effector cell function.  相似文献   

15.
Fragmentation of YAC-1 target cell DNA during cytolysis mediated by mouse natural killer (NK) cells and cytotoxic T lymphocytes (CTL) was compared. Cleavage of nuclear chromatin was always an extensive and early event in CTL-mediated cytolysis, whereas with NK cell-mediated killing the degree of DNA fragmentation showed an unexpected relationship to the effector:target (E:T) ratio. At low NK:YAC-1 ratios, DNA fragmentation and 51Cr release were equivalent and increased proportionately until a ratio of about 50:1 was reached; at higher ratios, 51Cr release increased as expected but DNA fragmentation decreased dramatically. Comparison of time course data at E:T ratios producing similar rates of 51Cr release showed that the target cell DNA fragmentation observed in NK killing was not nearly as rapid nor as extensive as that observed with CTL effectors. These results suggest that NK cells induce target cell injury via two different mechanisms. One mechanism would involve lysis mediated by cell-to-cell contact, while the other may induce DNA fragmentation via a soluble mediator. In support of this notion, cell-free culture supernatants containing NK cytotoxic factor (NKCF) induced DNA fragmentation in YAC-1 cells. The DNA fragments induced by NK cells and NKCF-containing supernatants consisted of oligonucleosomes indistinguishable from those induced by CTL. The results presented here show distinct differences in target cell DNA fragmentation induced by CTL and NK cells, and suggest that these two effectors use different mechanisms to achieve the same end. CTL seem to induce DNA fragmentation in their targets by direct signaling, whereas NK cells may do so by means of a soluble factor.  相似文献   

16.
At an early phase of viral infection, contact and cooperation between dendritic cells (DCs) and NK cells activates innate immunity, and also influences recruitment, when needed, of adaptive immunity. Influenza, an adaptable fast-evolving virus, annually causes acute, widespread infections that challenge the innate and adaptive immunity of humanity. In this study, we dissect and define the molecular mechanisms by which influenza-infected, human DCs activate resting, autologous NK cells. Three events in NK cell activation showed different requirements for soluble mediators made by infected DCs and for signals arising from contact with infected DCs. IFN-alpha was mainly responsible for enhanced NK cytolysis and also important for CD69 up-regulation, whereas IL-12 was necessary for enhancing IFN-gamma production. Increased CD69 expression and IFN-gamma production, but not increased cytolysis, required recognition of influenza-infected DCs by two NK cell receptors: NKG2D and NKp46. Abs specific for these receptors or their known ligands (UL16-binding proteins 1-3 class I-like molecules for NKG2D and influenza hemagglutinin for NKp46) inhibited CD69 expression and IFN-gamma production. Activation of NK cells by influenza-infected DCs and polyinosinic:polycytidylic acid (poly(I:C))-treated DCs was distinguished. Poly(I:C)-treated DCs did not express the UL16-binding protein 3 ligand for NKG2D, and in the absence of the influenza hemagglutinin there was no involvement of NKp46.  相似文献   

17.
The determinants of tumor cell susceptibility to NK cell-mediated cytolysis were analyzed in a two stage model. The binding of tumor cells to NK effectors was measured by target-effector conjugation and cold target competition in 51Cr-release assays, whereas triggering was measured by assaying phospholipid methylation in NK cells stimulated by intact targets. Representative targets could be grouped into three phenotypes based on the data. Those such as YAC 1.2 could bind and trigger NK cells whereas the mutagenized variant, YAC 6.28.8, could bind but was unable to trigger NK cells and therefore resisted lysis. The third phenotype was represented by HL-60 which could neither bind nor trigger NK cells and was therefore completely NK resistant. The oligosaccharide nature of the triggering molecules was demonstrated by showing that purified, high mannose containing, asparagine-linked oligosaccharides from tumor cell targets were potent stimulators of NK transmethylation at submicromolar levels. Tunicamycin pretreatment of target cells inhibited their triggering capacity but not their NK binding function. These results suggest a double restriction in NK specificity involving two independent but sequential stages in recognition represented in binding and triggering by asn-linked oligosaccharides on the tumor cell surface.  相似文献   

18.
Human Galectin-3 (Gal-3), a β-galactoside-binding protein expressed by tumor cells, has been reported to act as an immune regulator in antitumor T cells. However, its effect on natural killer (NK) cells is elusive. Using a recombinant human NK cell-activating receptor, NKp30 fusion protein (NKp30-Fc), we found that soluble NKp30-Fc could immunoprecipitate Galectin-3. The direct interaction between NKp30 and Galectin-3 was further confirmed using surface plasmon resonance experiments. Because Galectin-3 was mainly released from tumor cells in a soluble form in our study, the binding assay was performed to show that soluble Galectin-3 specifically bound to NK cells and NKp30 on the surface of the NK cells. Functionally, when soluble Galectin-3 was added to the NK-tumor cell coculture system, the NKp30-mediated, but not NKG2D-mediated, cytolysis and CD107a expression in the NK cells were inhibited, and these phenotypes could be restored by preincubation of soluble Galectin-3 with NKp30-Fc fusion protein or the addition of anti-Gal-3 antibody alone. Moreover, genetic down-regulation of Galectin-3 (shGal-3) resulted in tumor cells being more sensitive to NK cell lysis, and, reversely, Galectin-3-overexpressing HeLa cells (exGal-3) became less sensitive to NK cell killing. The results of these in vitro experiments were supported by studies in shGal-3-HeLa or exGal-3-HeLa xenograft non-obese diabetic/severe combined immunodeficiency mice after NK cell adoptive immunotherapy, indicating that Galectin-3 strongly antagonizes human NK cell attack against tumors in vivo. These findings indicate that Galectin-3 may function as an immune regulator to inhibit NK cell function against tumors, therefore providing a new therapeutic target for tumor treatment.  相似文献   

19.
Trogocytosis-based generation of suppressive NK cells   总被引:1,自引:0,他引:1  
Trogocytosis is a fast uptake of membranes and associated molecules from one cell by another. Trogocytosis between natural killer (NK) cells and tumors is already described, but the functional relevance of NK-tumor targets material exchange is unclear. We investigated whether the immunosuppressive molecule HLA-G that is commonly expressed by tumors in vivo and known to block NK cytolytic function, could be transferred from tumor cells to NK cells, and if this transfer had functional consequences. We show that activated NK cells acquire HLA-G1 from tumor cells, and that upon this acquisition, NK cells stop proliferating, are no longer cytotoxic, and behave as suppressor cells. Such cells can inhibit other NK cells' cytotoxic function and protect NK-sensitive tumor cells from cytolysis. These data are the first demonstration that trogocytosis of HLA-G1 can be a major mechanism of immune escape that acts through effector cells made to act as suppressor cells locally, temporarily, but efficiently. The broader consequences of membrane sharing between immune and non-immune cells on the function of effectors and the outcome of immune responses are discussed.  相似文献   

20.
Natural killer (NK) cells lyse a variety of tumor cells in vitro whereas NK-depleted unsensitized lymphocytes do not have this effect. In studies designed to elucidate the NK phenomenon, a series of experiments was carried out to identify properties of NK-sensitive targets and compare these with those of NK-insensitive targets and with targets rendered sensitive by treatment with phorbol esters. Following brief exposure to phorbol-12-myristate-13-acetate (PMA), the targets were thoroughly washed, and then incubated with lymphocyte preparations which were either enriched for or depleted of NK cells. PMA treatment increased the susceptibility of sensitive targets to NK-enriched fractions by only 20-30%, but made the NK-cell-insensitive targets markedly vulnerable to these effectors (80% lysis). Unexpectedly, brief PMA exposure also rendered cells susceptible to lysis by NK-cell-depleted lymphocytes. Yet, such targets were not killed by monocytes or B lymphocytes. Elimination of T8 lymphocytes from the NK-depleted fractions abolished lysis. To explore whether PMA had induced membrane changes not detectable on electron microscopy of thin sections, freeze-fracture studies were carried out on target cells before and after treatment with PMA. Freeze-fracture replicas of target cells which had been exposed to PMA exhibited a 50% reduction of the intramembranous particles (IMP) on the external leaflet of the plasma membrane but no changes in the number or size of the IMP associated with the protoplasmic leaflet face. The exact relationship of the structural changes and enhanced susceptibility to cytolysis has not yet been established. However, the observation that normal and tumor cells can be rendered vulnerable to lysis by lymphocytes which have not been sensitized immunologically may have practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号