首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell biology from a nuclear perspective, Cells, a Laboratory Manual (1998). D.L. Spector, R.D. Goldman, and L.A. Leinwand (Eds). Cold Spring Harbor, NY: CSHL Press, 2,136 pp. (3 vols.) $255 comb-bound; ISBN 0879695218  相似文献   

2.
Apical-basal polarity of epithelial cells is critical for their symmetric versus asymmetric division and commonly thought to be established in interphase. In a novel type of cell division termed "mirror-symmetric", apical cell constituents accumulate during M-phase at the cleavage furrow, resulting in epithelial daughter cells with opposite apical-basal polarity.  相似文献   

3.
Escherichia coli Div 124(ts) is a conditional-lethal cell division mutant formed from a cross between a mutant that produces polar anucleated minicells and a temperature-sensitive cell division mutant affected in a stage of cross-wall synthesis. Under permissive growth temperature (30 C), Div 124(ts) grows and produces normal progeny cells and anucleated minicells from its polar ends. When transferred to nonpermissive growth temperature (42 C), growth and macromolecular synthesis continue, but cell division and minicell formation are inhibited. Growth at 42 C results in formation of filamentous cells showing some constrictions along the length of the filaments. Return of the filaments from 42 to 30 C results in cell division and minicell formation in association with the constrictions and other areas along the length of the filaments. This gives rise to a "necklace-type" array of cells and minicells. Recovery of cell division is observed after a lag and is followed by a burst in cell division and finally by a return to the normal growth characteristic of 30 C cultures. Recovery of cell division takes place in the presence of chloramphenicol or nalidixic acid when these are added at the time of shift from 42 to 30 C, and indicates that a division potential for filament fragmentation is accumulated while the cells are at 42 C. This division potential is used for the production of both minicells and cells of normal length. The conditional-lethal temperature sensitive mutation controls a step(s) in cross-wall synthesis common to cell division and minicell formation.  相似文献   

4.
Ecologically relevant genetic variation occurs in genes harbouring alleles that are adaptive in some environments but not in others. Analysis of this type of genetic variation in model organisms has made substantial progress, and is now being expanded to other species in order to better cover the diversity of plant life. Recent advances in connecting ecological and molecular studies in non-model species have been made with regard to edaphic and climatic adaptation, plant reproduction, life-history parameters and biotic interactions. New research avenues that increase biological complexity and ecological relevance by integrating ecological experiments with population genetic and functional genomic approaches provide new insights into the genetic basis of ecologically relevant variation.  相似文献   

5.
6.
7.
8.
9.
10.
Parkinson's disease: a genetic perspective   总被引:1,自引:0,他引:1  
Belin AC  Westerlund M 《The FEBS journal》2008,275(7):1377-1383
Parkinson's disease (PD) is a common neurodegenerative disorder in the aging population, affecting more than 1% over the age of 65 years. Certain rare forms of the disease are monogenic, representing 5-10% of PD patients, but there is increasing evidence that multiple genetic risk factors are important also for common forms of PD. To date, 13 genetic loci, PARK1-13, have been suggested for rare forms of PD such as autosomal dominant and autosomal recessive PD. At six of these loci, genes have been identified and reported by several groups to carry mutations that are linked to affected family members. Genes in which mutations have been linked to familial PD have also been shown to be candidate genes for idiopathic forms of PD, as those same genes may also carry other mutations that merely increase the risk. Four of the PARK genes, SNCA at PARK1, UCH-L1 at PARK5, PINK1 at PARK6 and LRRK2 at PARK8, have been implicated in sporadic PD. There are indeed multiple genetic risk factors that combine in different ways to increase or decrease risk, and several of these need to be identified in order to begin unwinding the causative pathways leading to the different forms of PD. In this review, we present the molecular genetics of PD that are understood today, to help explain the pathways leading to neurodegeneration.  相似文献   

11.
12.
Cell division cycle of cultured neural precursor cells from Drosophila   总被引:1,自引:0,他引:1  
In Drosophila neuroblast cells, which give rise to the embryonic nervous system, undergo a limited number of asymmetric cell divisions. These cell lineages result in the formation of clusters of neurons when neuroblasts are isolated and cultured. A significant proportion of these neural cell clusters (NCC) arise from individual precursor cells. The formation of NCC containing more than two neurons is repressed when DNA synthesis is inhibited. Cell division during NCC development was examined by [3H]thymidine autoradiography. The pattern of DNA synthesis by neural cells was that expected based on observations in situ. The pattern in individual NCC was consistent with single precursor origins for more than 80% of NCC, under our conditions of culture. Based on this, we show that the largest neural precursors at gastrulation undergo the most cell divisions in culture. The neuroblast cell division cycle averages approximately 1.5 hr, and is similar to that of blastoderm cells.  相似文献   

13.
14.
Cell division in Mycoplasma gallisepticum   总被引:4,自引:0,他引:4  
  相似文献   

15.
Cell shape and cell division   总被引:1,自引:0,他引:1  
The correlation between cell shape elongation and the orientation of the division axis described by early cell biologists is still used as a paradigm in developmental studies. However, analysis of early embryo development and tissue morphogenesis has highlighted the role of the spatial distribution of cortical cues able to guide spindle orientation. In vitro studies of cell division have revealed similar mechanisms. Recent data support the possibility that the orientation of cell division in mammalian cells is dominated by cell adhesion and the associated traction forces developed in interphase. Cell shape is a manifestation of these adhesive and tensional patterns. These patterns control the spatial distribution of cortical signals and thereby guide spindle orientation and daughter cell positioning. From these data, cell division appears to be a continuous transformation ensuring the maintenance of tissue mechanical integrity.  相似文献   

16.
When a fission yeast cell divides, the anillin-like protein mid1p helps to position the contractile ring in the cell middle. Recent experiments from two groups have shown how the cell-polarity factor pom1p negatively regulates the distribution of mid1p.  相似文献   

17.
18.
It is demonstrated that, if the variations of viscosity throughout a cell are considered, swelling stresses may produce elongation and division. To do this it is necessary to generalize Betti's theorem to cover systems containing viscosity gradients and such a generalization is presented. On the basis of two special assumptions it is shown that most of the results of the diffusion drag theory of cell division may be duplicated by the present theory.  相似文献   

19.
Maresca TJ 《Current biology : CB》2011,21(14):R557-R559
Separating mitotic error correction, chromosome biorientation and the spindle assembly checkpoint (SAC) is complicated by their interconnected relationships. New research finds that Aurora B kinase, which drives error correction and promotes biorientation, also directly regulates the SAC.  相似文献   

20.
A mathematical model of the regulation of cell division is suggested. The model is based on the hypothesis that the process giving rhythm to cell division is located in the cell membrane: i.e., the process of free-radical oxidation of membrane lipids. Much depends on the physical state of the membrane. In the membrane, phase transitions take place because of the changes in lipid composition. These transitions differ in normal and tumor cells: in normal cells they are sharp and hysteretic owing to the presence of a framework (membrane skeleton) on the surface of the membrane, while in tumor cells the integrity of the surface is violated so that the transitions are smooth. This model makes it possible to explain differences in the regulation of normal and cancer cell proliferation. Within the limits of the model, such phenomena as density dependent inhibition of growth, reverse transformation, influence of cyclic AMP and ions of Ca2+ on the cell cycle, the actions of serum and of proteases on the cycle, and so on, are explained. A rational scheme for the appearance of the selective damage found in tumor cells is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号