首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enzymatic assay was developed to measure tetrahydromethanopterin (H(4)MPT) levels in wild-type and mutant cells of Methylobacterium extorquens AM1. H(4)MPT was detectable in wild-type cells but not in strains with a mutation of either the orf4 or the dmrA gene, suggesting a role for these two genes in H(4)MPT biosynthesis. The protein encoded by orf4 catalyzed the reaction of ribofuranosylaminobenzene 5'-phosphate synthase, the first committed step of H(4)MPT biosynthesis. These results provide the first biochemical evidence for H(4)MPT biosynthesis genes in bacteria.  相似文献   

2.
Ten novel methylotrophy genes of the facultative methylotroph Methylobacterium extorquens AM1 were identified from a transposon mutagenesis screen. One of these genes encodes a product having identity with dihydrofolate reductase (DHFR). This mutant has a C(1)-defective and methanol-sensitive phenotype that has previously only been observed for strains defective in tetrahydromethanopterin (H(4)MPT)-dependent formaldehyde oxidation. These results suggest that this gene, dmrA, may encode dihydromethanopterin reductase, an activity analogous to that of DHFR that is required for the final step of H(4)MPT biosynthesis.  相似文献   

3.
The facultative methylotroph Methylobacterium extorquens AM1 possesses two pterin-dependent pathways for C(1) transfer between formaldehyde and formate, the tetrahydrofolate (H(4)F)-linked pathway and the tetrahydromethanopterin (H(4)MPT)-linked pathway. Both pathways are required for growth on C(1) substrates; however, mutants defective for the H(4)MPT pathway reveal a unique phenotype of being inhibited by methanol during growth on multicarbon compounds such as succinate. It has been previously proposed that this methanol-sensitive phenotype is due to the inability to effectively detoxify formaldehyde produced from methanol. Here we present a comparative physiological characterization of four mutants defective in the H(4)MPT pathway and place them into three different phenotypic classes that are concordant with the biochemical roles of the respective enzymes. We demonstrate that the analogous H(4)F pathway present in M. extorquens AM1 cannot fulfill the formaldehyde detoxification function, while a heterologously expressed pathway linked to glutathione and NAD(+) can successfully substitute for the H(4)MPT pathway. Additionally, null mutants were generated in genes previously thought to be essential, indicating that the H(4)MPT pathway is not absolutely required during growth on multicarbon compounds. These results define the role of the H(4)MPT pathway as the primary formaldehyde oxidation and detoxification pathway in M. extorquens AM1.  相似文献   

4.
The methylotrophic proteobacterium Methylobacterium extorquens AM1 possesses tetrahydromethanopterin (H(4)MPT)-dependent enzymes, which are otherwise specific to methanogenic and sulfate-reducing archaea and which have been suggested to be involved in formaldehyde oxidation to CO(2) in M. extorquens AM1. The distribution of H(4)MPT-dependent enzyme activities in cell extracts of methylotrophic bacteria from 13 different genera are reported. H(4)MPT-dependent activities were detected in all of the methylotrophic and methanotrophic proteobacteria tested that assimilate formaldehyde by the serine or ribulose monophosphate pathway. H(4)MPT-dependent activities were also found in autotrophic Xanthobacter strains. However, no H(4)MPT-dependent enzyme activities could be detected in other autotrophic alpha-proteobacteria or in gram-positive methylotrophic bacteria. Genes encoding methenyl H(4)MPT cyclohydrolase (mch genes) were cloned and sequenced from several proteobacteria. Bacterial and archaeal Mch sequences have roughly 35% amino acid identity and form distinct groups in phylogenetic analysis.  相似文献   

5.
Methylobacterium extorquens AM1 possesses a formaldehyde-oxidation pathway that involves enzymes with high sequence identity with enzymes from methanogenic and sulfate-reducing archaea. Here we describe the purification and characterization of formylmethanofuran-tetrahydromethanopterin formyltransferase (Ftr), which catalyzes the reversible formation of formylmethanofuran (formylMFR) and tetrahydromethanopterin (H4MPT) from N5-formylH4MPT and methanofuran (MFR). Formyltransferase from M. extorquens AM1 showed activity with MFR and H4MPT isolated from the methanogenic archaeon Methanothermobacter marburgensis (apparent Km for formylMFR = 50 microM; apparent Km for H4MPT = 30 microM). The enzyme is encoded by the ffsA gene and exhibits a sequence identity of approximately 40% with Ftr from methanogenic and sulfate-reducing archaea. The 32-kDa Ftr protein from M. extorquens AM1 copurified in a complex with three other polypeptides of 60 kDa, 37 kDa and 29 kDa. Interestingly, these are encoded by the genes orf1, orf2 and orf3 which show sequence identity with the formylMFR dehydrogenase subunits FmdA, FmdB and FmdC, respectively. The clustering of the genes orf2, orf1, ffsA, and orf3 in the chromosome of M. extorquens AM1 indicates that, in the bacterium, the respective polypeptides form a functional unit. Expression studies in Escherichia coli indicate that Ftr requires the other subunits of the complex for stability. Despite the fact that three of the polypeptides of the complex showed sequence similarity to subunits of Fmd from methanogens, the complex was not found to catalyze the oxidation of formylMFR. Detailed comparison of the primary structure revealed that Orf2, the homolog of the active site harboring subunit FmdB, lacks the binding motifs for the active-site cofactors molybdenum, molybdopterin and a [4Fe-4S] cluster. Cytochrome c was found to be spontaneously reduced by H4MPT. On the basis of this property, a novel assay for Ftr activity and MFR is described.  相似文献   

6.
Recently it was found that Methylobacterium extorquens AM1 contains both tetrahydromethanopterin (H4MPT) and tetrahydrofolate (H4F) as carriers of C1 units. In this paper we report that the aerobic methylotroph contains a methenyl H4MPT cyclohydrolase (0.9 U x mg-1 cell extract protein) and a methenyl H4F cyclohydrolase (0.23 U x mg-1). Both enzymes, which were specific for their substrates, were purified and characterized and the encoding genes identified via the N-terminal amino acid sequence. The purified methenyl H4MPT cyclohydrolase with a specific activity of 630 U x mg-1 (Vmax = 1500 U x mg-1; Km = 30 microm) was found to be composed of two identical subunits of molecular mass 33 kDa. Its sequence was approximately 40% identical to that of methenyl H4MPT cyclohydrolases from methanogenic archaea. The methenyl H4F cyclohydrolase with a specific activity of 100 U x mg-1 (Vmax = 330 U x mg-1; Km = 80 microm) was found to be composed of two identical subunits of molecular mass 22 kDa. Its sequence was not similar to that of methenyl H4MPT cyclohydrolases or to that of other methenyl H4F cyclohydrolases. Based on the specific activities in cell extract and from the growth properties of insertion mutants it is suggested that the methenyl H4MPT cyclohydrolase might have a catabolic, and the methenyl-H4F cyclohydrolase an anabolic function in the C1-unit metabolism of M. extorquens AM1.  相似文献   

7.
The serine cycle methylotroph Methylobacterium extorquens AM1 contains two pterin-dependent pathways for C(1) transfers, the tetrahydrofolate (H(4)F) pathway and the tetrahydromethanopterin (H(4)MPT) pathway, and both are required for growth on C(1) compounds. With the exception of formate-tetrahydrofolate ligase (FtfL, alternatively termed formyl-H(4)F synthetase), all of the genes encoding the enzymes comprising these two pathways have been identified, and the corresponding gene products have been purified and characterized. We present here the purification and characterization of FtfL from M. extorquens AM1 and the confirmation that this enzyme is encoded by an ftfL homolog identified previously through transposon mutagenesis. Phenotypic analyses of the ftfL mutant strain demonstrated that FtfL activity is required for growth on C(1) compounds. Unlike mutants defective for the H(4)MPT pathway, the ftfL mutant strain does not exhibit phenotypes indicative of defective formaldehyde oxidation. Furthermore, the ftfL mutant strain remained competent for wild-type conversion of [(14)C]methanol to [(14)C]CO(2). Collectively, these data confirm our previous presumptions that the H(4)F pathway is not the key formaldehyde oxidation pathway in M. extorquens AM1. Rather, our data suggest an alternative model for the role of the H(4)F pathway in this organism in which it functions to convert formate to methylene H(4)F for assimilatory metabolism.  相似文献   

8.
During growth on one-carbon (C1) compounds, the aerobic alpha-proteobacterium Methylobacterium extorquens AM1 synthesizes the tetrahydromethanopterin (H4MPT) derivative dephospho-H4MPT as a C1 carrier in addition to tetrahydrofolate. The enzymes involved in dephospho-H4MPT biosynthesis have not been identified in bacteria. In archaea, the final step in the proposed pathway of H4MPT biosynthesis is the reduction of dihydromethanopterin (H2MPT) to H4MPT, a reaction analogous to the reaction of the bacterial dihydrofolate reductase. A gene encoding a dihydrofolate reductase homolog has previously been reported for M. extorquens and assigned as the putative H2MPT reductase gene (dmrA). In the present work, we describe the biochemical characterization of H2MPT reductase (DmrA), which is encoded by dmrA. The gene was expressed with a six-histidine tag in Escherichia coli, and the recombinant protein was purified by nickel affinity chromatography and gel filtration. Purified DmrA catalyzed the NAD(P)H-dependent reduction of H2MPT with a specific activity of 2.8 micromol of NADPH oxidized per min per mg of protein at 30 degrees C and pH 5.3. Dihydrofolate was not a substrate for DmrA at the physiological pH of 6.8. While the existence of an H2MPT reductase has been proposed previously, this is the first biochemical evidence for such an enzyme in any organism, including archaea. Curiously, no DmrA homologs have been identified in the genomes of known methanogenic archaea, suggesting that bacteria and archaea produce two evolutionarily distinct forms of dihydromethanopterin reductase. This may be a consequence of different electron donors, NAD(P)H versus reduced F420, used, respectively, in bacteria and methanogenic archaea.  相似文献   

9.
Tetrahydromethanopterin (H4 MPT) is a tetrahydrofolate analogue involved as a C1 carrier in the metabolism of various groups of microorganisms. How H4MPT is bound to the respective C1 unit converting enzymes remained elusive. We describe here the structure of the homopentameric formaldehyde-activating enzyme (Fae) from Methylobacterium extorquens AM1 established at 2.0 angstrom without and at 1.9 angstrom with methylene-H4MPT bound. Methylene-H4MPT is bound in an "S"-shaped conformation into the cleft formed between two adjacent subunits. Coenzyme binding is accompanied by side chain rearrangements up to 5 angstrom and leads to a rigidification of the C-terminal arm, a formation of a new hydrophobic cluster, and an inversion of the amide side chain of Gln88. Methylene-H4MPT in Fae shows a characteristic kink between the tetrahydropyrazine and the imidazolidine rings of 70 degrees that is more pronounced than that reported for free methylene-H4MPT in solution (50 degrees). Fae is an essential enzyme for energy metabolism and formaldehyde detoxification of this bacterium and catalyzes the formation of methylene-H4MPT from H4MPT and formaldehyde. The molecular mechanism ofthis reaction involving His22 as acid catalyst is discussed.  相似文献   

10.
Recently, it has been shown that heterotrophic methylotrophic Proteobacteria contain tetrahydrofolate (H(4)F)- and tetrahydromethanopterin (H(4)MPT)-dependent enzymes. Here we report on the purification of two methylene tetrahydropterin dehydrogenases from the methylotroph Hyphomicrobium zavarzinii ZV580. Both dehydrogenases are composed of one type of subunit of 31 kDa. One of the dehydrogenases is NAD(P)-dependent and specific for methylene H(4)MPT (specific activity: 680 U/mg). Its N-terminal amino acid sequence showed sequence identity to NAD(P)-dependent methylene H(4)MPT dehydrogenase MtdB from Methylobacterium extorquens AM1. The second dehydrogenase is specific for NADP and methylene H(4)F (specific activity: 180 U/mg) and also exhibits methenyl H(4)F cyclohydrolase activity. Via N-terminal amino acid sequencing this dehydrogenase was identified as belonging to the classical bifunctional methylene H(4)F dehydrogenases/cyclohydrolases (FolD) found in many bacteria and eukarya. Apparently, the occurrence of methylene tetrahydrofolate and methylene tetrahydromethanopterin dehydrogenases is not uniform among different methylotrophic alpha-Proteobacteria. For example, FolD was not found in M. extorquens AM1, and the NADP-dependent methylene H(4)MPT dehydrogenase MtdA was present in the bacterium that also shows H(4)F activity.  相似文献   

11.
新辅基吡咯喹啉醌(PQQ)生物合成基因研究进展   总被引:1,自引:0,他引:1  
吡咯喹啉醌(Pyroloquinoline-Quinone,PQQ)是氧化还原酶的新辅基。它在细菌体内是由一组排列成簇的相关基因即pqq基因控制合成的。根据不同细菌来源pqq基因的同源性和对应关系,可将pqq基因归为7类:簇基因1~7。在Acinetobactercalcoaceticus中存在其中四个,KlebsielaPneumoniae和MethylobacteriumOrganophilumDSM760中6个,而Methylobacteriumex-torquensAM1中存在全部7个簇基因。簇基因1编码一个由22~29年氨基酸组成的小肽,此小肽可能是PQQ的前体,簇基因2可能涉及PQQ跨膜转运,簇基因3可能负责PQQ合成的最后一步酶催化,簇基因5可能涉及PQQ合成中某种酶的辅因子合成,簇基因6和7可能负责小肽的加工。簇基因4功能还不清楚,但在M.extorquensAM1中簇基因3和4是以融合基因存在的。  相似文献   

12.
Methylobacterium extorquens AM1 pqqEF are genes required for synthesis of pyrroloquinoline quinone (PQQ). The nucleotide sequence of these genes indicates PqqE belongs to an endopeptidase family, including PqqF of Klebsiella pneumoniae, and M. extorquens AM1 PqqF has low identity with the same endopeptidase family. M. extorquens AM1 pqqE complemented a K. pneumoniae pqqF mutant.  相似文献   

13.
Cell extracts of Methylobacterium extorquens AM1 were recently found to catalyze the dehydrogenation of methylene tetrahydromethanopterin (methylene H4MPT) with NAD+ and NADP+. The purification of a 32-kDa NADP-specific methylene H4MPT dehydrogenase (MtdA) was described already. Here we report on the characterization of a second methylene H4MPT dehydrogenase (MtdB) from this aerobic alpha-proteobacterium. Purified MtdB with an apparent molecular mass of 32 kDa was shown to catalyze the oxidation of methylene H4MPT to methenyl H4MPT with NAD+ and NADP+ via a ternary complex catalytic mechanism. The Km for methylene H4MPT was 50 microM with NAD+ (Vmax = 1100 U x mg(-1) and 100 microM with NADP+ (Vmax = 950 U x mg(-1). The Km value for NAD+ was 200 microM and for NADP+ 20 microM. In contrast to MtdA, MtdB could not catalyze the dehydrogenation of methylene tetrahydrofolate. Via the N-terminal amino-acid sequence, the MtdB encoding gene was identified to be orfX located in a cluster of genes whose translated products show high sequence identities to enzymes previously found only in methanogenic and sulfate reducing archaea. Despite its location, MtdB did not show sequence similarity to archaeal enzymes. The highest similarity was to MtdA, whose encoding gene is located outside of the archaeal island. Mutants defective in MtdB were unable to grow on methanol and showed a pronounced sensitivity towards formaldehyde. On the basis of the mutant phenotype and of the kinetic properties, possible functions of MtdB and MtdA are discussed. We also report that both MtdB and MtdA can be heterologously overproduced in Escherichia coli making these two enzymes readily available for structural analysis.  相似文献   

14.
NADP-dependent methylene-H(4)MPT dehydrogenase, MtdA, from Methylobacterium extorquens AM1 catalyzes the dehydrogenation of methylene-tetrahydromethanopterin and methylene-tetrahydrofolate with NADP(+) as cosubstrate. The X-ray structure of MtdA with and without NADP bound was established at 1.9 A resolution. The enzyme is present as a homotrimer. The alpha,beta fold of the monomer is related to that of methylene-H(4)F dehydrogenases, suggesting a common evolutionary origin. The position of the active site is located within a large crevice built up by the two domains of one subunit and one domain of a second subunit. Methylene-H(4)MPT could be modeled into the cleft, and crucial active site residues such as Phe18, Lys256, His260, and Thr102 were identified. The molecular basis of the different substrate specificities and different catalytic demands of MtdA compared to methylene-H(4)F dehydrogenases are discussed.  相似文献   

15.
16.
Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments.  相似文献   

17.
Methylobacterium extorquens AM1, a serine cycle facultative methylotroph, accumulates poly-beta-hydroxybutyrate (PHB) as a carbon and energy reserve material during growth on both multicarbon- and single-carbon substrates. Recently, the identification and mutation of the genes involved in the biosynthesis and degradation of PHB have been described for this bacterium, demonstrating that two of the genes of the PHB cycle (phaA and phaB) are also involved in C(1) and C(2) metabolism, as part of a novel pathway for glyoxylate regeneration in the serine cycle (N. Korotkova and M. E. Lidstrom, J. Bacteriol. 183:1038-1046, 2001; N. Korotkova, L. Chistoserdova, V. Kuksa, and M. E. Lidstrom, J. Bacteriol. 184:1750-1758, 2002). In this work, three new genes involved in PHB biosynthesis in this bacterium have been investigated via mutation and phenotypic analysis: gap11, gap20, and phaR. We demonstrate that gap11 and gap20 encode two major granule-associated proteins (phasins) and that mutants with mutations in these genes are defective in PHB production and also in growth on C(2) compounds, while they show wild-type growth characteristics on C(1) or multicarbon compounds. The phaR mutant shows defects in both PHB accumulation and growth characteristics when grown on C(1) compounds and has defects in PHB accumulation but grows normally on C(3) and C(4) compounds, while both PHB accumulation and growth rate are at wild-type levels during growth on C(2) compounds. Our results suggest that this phenotype is due to altered fluxes of acetyl coenzyme A (CoA), a major intermediate in C(1), C(2), and heterotrophic metabolism in M. extorquens AM1, as well as the entry metabolite for the PHB cycle. Therefore, it seems likely that PhaR acts to control acetyl-CoA flux to PHB in this methylotrophic bacterium.  相似文献   

18.
Formaldehyde is toxic for all organisms from bacteria to humans due to its reactivity with biological macromolecules. Organisms that grow aerobically on single-carbon compounds such as methanol and methane face a special challenge in this regard because formaldehyde is a central metabolic intermediate during methylotrophic growth. In the alpha-proteobacterium Methylobacterium extorquens AM1, we found a previously unknown enzyme that efficiently catalyzes the removal of formaldehyde: it catalyzes the condensation of formaldehyde and tetrahydromethanopterin to methylene tetrahydromethanopterin, a reaction which also proceeds spontaneously, but at a lower rate than that of the enzyme-catalyzed reaction. Formaldehyde-activating enzyme (Fae) was purified from M. extorquens AM1 and found to be one of the major proteins in the cytoplasm. The encoding gene is located within a cluster of genes for enzymes involved in the further oxidation of methylene tetrahydromethanopterin to CO(2). Mutants of M. extorquens AM1 defective in Fae were able to grow on succinate but not on methanol and were much more sensitive toward methanol and formaldehyde. Uncharacterized orthologs to this enzyme are predicted to be encoded by uncharacterized genes from archaea, indicating that this type of enzyme occurs outside the methylotrophic bacteria.  相似文献   

19.
Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and other characterized oxalotrophic bacteria via oxalyl-coenzyme A (oxalyl-CoA) decarboxylase and formyl-CoA transferase and subsequent oxidation to carbon dioxide via formate dehydrogenase. However, in contrast to other oxalate-degrading organisms, the assimilation of this carbon compound in M. extorquens AM1 occurs via the operation of a variant of the serine cycle as follows: oxalyl-CoA reduction to glyoxylate and conversion to glycine and its condensation with methylene-tetrahydrofolate derived from formate, resulting in the formation of C3 units. The recently discovered ethylmalonyl-CoA pathway operates during growth on oxalate but is nevertheless dispensable, indicating that oxalyl-CoA reductase is sufficient to provide the glyoxylate required for biosynthesis. Analysis of an oxalyl-CoA synthetase- and oxalyl-CoA-reductase-deficient double mutant revealed an alternative, although less efficient, strategy for oxalate assimilation via one-carbon intermediates. The alternative process consists of formate assimilation via the tetrahydrofolate pathway to fuel the serine cycle, and the ethylmalonyl-CoA pathway is used for glyoxylate regeneration. Our results support the notion that M. extorquens AM1 has a plastic central metabolism featuring multiple assimilation routes for C1 and C2 substrates, which may contribute to the rapid adaptation of this organism to new substrates and the eventual coconsumption of substrates under environmental conditions.  相似文献   

20.
【背景】由于甲基营养菌被发现的时间较短,而且可以生产吡咯喹啉醌(pyrroloquinoline quinone,PQQ)的甲基杆菌属细菌只有少数菌株的全基因组序列被公布,增加了该类细菌基因组学和生物代谢途径研究的难度。【目的】将本实验室筛选的PQQ生产菌经多种诱变方式处理,用于提高PQQ的发酵产量。对高产突变菌株进行全基因组解析,以探究甲基杆菌PQQ合成的分子机制,为后续分子育种提供序列背景信息。【方法】将野生型PQQ生产菌株进行紫外诱变、亚硝基胍诱变、甲基磺酸乙酯诱变、硫酸二乙酯诱变和紫外-氯化锂复合诱变。将突变菌株利用PromethION三代测序平台和MGISEQ-2000二代测序平台测序,然后进行组装和功能注释。组装得到的全基因组序列与模式菌株扭脱甲基杆菌AM1 (Methylobacterium extorquens AM1)进行比较基因组学分析。【结果】经11轮诱变获得一株突变菌株NI91,其PQQ产量为19.49mg/L,相较原始菌株提高44.91%。突变菌株NI91的基因组由一个5 409 262 bp的染色体组成,共编码4 957个蛋白,与模式菌株M. extorqu...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号